簡易檢索 / 詳目顯示

研究生: 簡銘宏
Chien, Ming-Hung
論文名稱: 一個採用雙二進制編碼的低功率電壓模式發射器
A Low Power Duobinary Voltage-Mode Transmitter
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 86
中文關鍵詞: 電壓模式發射器雙二進制編碼有線傳輸
外文關鍵詞: Voltage-Mode Transmitter, Duobinary, Wireline Communication
相關次數: 點閱:90下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現一個應用於有線傳輸且採用雙二進制編碼的低功率電壓模式發射器。藉由控制差動輸出之間的路徑,所提出的雙二進制控制方法把傳統的不歸零電壓模式發射器輕易的轉換成雙二進制電壓模式發射器;同時提出新的預加強方法來克服有頻率相依特性的通道損失,並包含阻抗匹配技巧來維持訊號的完整性。
    此雙二進制編碼的電壓模式發射器以台灣積體電路公司的90奈米互補式金屬氧化物半導體製程進行設計與製作,在輸入資料頻率為6 Gbps下,以偽亂數二進位數列15的模式輸入,並且設定2.16 dB的預加強增益下,經過20公分的FR4板子通道及90公分的電纜線後,輸出眼高為109.375 mV,眼寬為47.301 ps,而抖動的方均根值為17.14 ps,此測試晶片的核心電路面積以及功耗效率值分別為0.066 mm2和2.36 pJ/bit。

    The thesis presents a low power duobinary voltage-mode transmitter for wireline communication. By controlling a short path between two differential terminals, the proposed duobinary control scheme can easily transform a conventional NRZ voltage-mode transmitter into a duobinary voltage-mode transmitter. Meanwhile, a new pre-emphasis method, including a common impedance matching technique, is proposed to overcome frequency-dependent channel loss and maintain signal integrity.
    The duobinary voltage-mode transmitter is designed and fabricated in TSMC 90-nm CMOS process. The measured data eye height is 109.375 mV, eye width is 47.301 ps and RMS jitter is 17.14 ps with a pseudo random binary sequence (PRBS) 15 pattern at 6Gb/s and 1-V supply voltage at the far end of 20-cm FR4 board trace and 90-cm cable after setting the pre-emphasis boosting gain for 2.16 dB. The core area of the test chip is 0.066 mm2 and its power efficiency is 2.36 pJ/bit.

    摘要 III Abstract IV 誌謝 V Table of Contents VI List of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Introduction and Motivation 1 1.2 Thesis Organization 4 Chapter 2 Background Knowledge of Transmitters 6 2.1 Signal Coding Types 6 2.2 Basic Transmitter Circuits 8 2.2.1 Serializer Architectures 9 2.2.2 Basic Transmitter Driver Circuits with impedance matching 11 2.3 Pre-emphasis Method 12 2.3.1 Overview for Equalization 12 2.3.2 Feed-forward Equalizer 15 2.3.3 Traditional Transmitter Drivers with Impedance Matching and Pre-emphasis Techniques 21 2.4 Drivers of High Swing Voltage-Mode Transmitters 25 2.4.1 Traditional impedance matching techniques of SST drivers 26 2.4.2 A T-coil-Enhanced 8.5 Gb/s High-Swing Source-Series-Terminated Transmitter in 65 nm Bulk CMOS 28 2.4.3 A 32 mW 7.4 Gb/s Protocol-Agile Source-Series-Terminated Transmitter in 45 nm CMOS SOI 29 2.4.4 Fully Digital Transmit Equalizer With Dynamic Impedance Modulation 31 2.4.5 A 28-Gb/s Source-Series-Terminated TX in 32nm CMOS SOI 33 Chapter 3 A Low Power Duobinary Voltage-Mode Transmitter 35 3.1 Brief Introduction 35 3.2 Transmitter Architecture Consideration 36 3.2.1 Signal Coding Consideration 36 3.2.2 Typical Architecture Comparison 37 3.2.3 Impedance Matching Scheme 38 3.3 Proposed Transmitter 39 3.3.1 Output Driver 39 3.3.2 Pre-emphasis Method 40 3.4 Circuit Implementation 43 3.4.1 Overall Architecture 43 3.4.2 Divider Circuit 45 3.4.3 PRBS15 47 3.4.4 Serializer 48 3.4.5 Duobinary Control Signal Detection Circuit 49 3.5 Layout and Floor Plan 52 Chapter 4 Simulation and Measurement Results 55 4.1 Simulation Results 55 4.2 Die Micrograph and Measurement Setup 68 4.3 Measurement Results 71 Chapter 5 Conclusions and Future Works 78 5.1 Conclusions 78 5.2 Future Work 79 Bibliography 83

    [1] S. Palermo, High-Speed Links Circuits and Systems Class Notes [Online]. Available: http://www.ece.tamu.edu/~spalermo/ecen720.html
    [2] Y. Kudoh et al., “A 0.13-μm CMOS 5-Gb/s 10-m 28AWG Cable Transceiver With No-Feedback-Loop Continuous-Time Post-Equalizer,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 741-746, May. 2003.
    [3] H. Wang, and J. Lee, “A 21-Gb/s 87-mW Transceiver With FFE/DFE/Analog Equalizer in 65-nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 909-920, Apr. 2010.
    [4] C. Menolfi et al., “A 16Gb/s Source-Series Terminated Transmitter in 65nm CMOS SOI,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 446-447.
    [5] K. Fukuda et al., ” An 8Gb/s Transceiver with 3x-Oversampling 2-Threshold Eye-Tracking CDR Circuit for -36.8dB-loss Backplane,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 98-99.
    [6] M. Kossel et al., “A T-Coil-Enhanced 8.5 Gb/s High-Swing SST Transmitter in 65 nm Bulk CMOS With < -16 dB Return Loss Over 10 GHz Bandwidth,” IEEE J. Solid-State Circuits, vol.43, no.12, pp.2905-2920, Dec. 2008.
    [7] W.D. Dettloff et al., “A 32mW 7.4Gb/s protocol-agile source-series-terminated transmitter in 45nm CMOS SOI,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 370-371.
    [8] C. Menolf et al., “A 14Gb/s high-swing thin-oxide device SST TX in 45nm CMOS SOI,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 156-158.
    [9] R. Sredojevic and V. Stojanovic, “Fully digital transmit equalizer with dynamic impedance modulation,” IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1857-1869, Aug. 2011.
    [10] C. Menolfi et al., “A 28Gb/s source-series terminated TX in 32nm CMOS SOI,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012, pp. 334-336.
    [11] K. Yamaguchi et al., “12Gb/s Duobinary Signaling with x2 Oversampled Edge Equalization,” Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 70-71.
    [12] J. Lee et al., “Design and Comparison of Three 20-Gb/s Backplane Transceivers for Duobinary, PAM4, and NRZ Data,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2120-2133, Sep. 2008.
    [13] B. Min, et al., “20 Gb/s triple-mode (PAM-2, PAM-4, and duobinary) transmitter,” Microelectronics Journal, vol. 43, issue 10, pp. 687-696, Oct. 2012.
    [14] T. Beukema et al., “A 6.4-Gb/s CMOS SerDes Core With Feed-Forward and Decision-Feedback Equalization,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp.2633-2645, Dec. 2005.
    [15] J. F. Bulzacchelli et al., “A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp.2885-2900, Dec. 2006.
    [16] G. Balamurugan et al., “A Scalable 5-15 Gbps, 14-75 mW Low-Power I/O Transceiver in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp.1010-1019, Apr. 2008.
    [17] H. Hatamkhan et al., “A 10-mW 3.6-Gbps I/O transmitter,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2003, pp. 97-98.
    [18] J. Poulton et al., “A 14-mW 6.25-Gb/s Transceiver in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol.42, no.12, pp.2745-2757, Dec. 2007.
    [19] Y.-H. Song and S. Palermo, “A 6-Gbit/s Hybrid Voltage-Mode Transmitter With Current-Mode Equalization in 90-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.59, no. 8, pp.491-495, Aug. 2012.
    [20] Y. Lu et al., “Design and Analysis of Energy-Efficient Reconfigurable Pre-Emphasis Voltage-Mode Transmitters,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp.1898-1909, Aug. 2013.
    [21] S. Saxena et al., “A 5Gb/s Energy-Efficiency Voltage-Mode Transmitter Using Time-Based De-Emphasis,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1827-1836, Aug. 2014.
    [22] C.-K. K. Yang, “Design of high-speed serial link in CMOS,” Ph.D. dissertation, Stanford Univ., Stanford, CA, 1998.
    [23] J. F. Buckwalter et al., “Phase and Amplitude Pre-Emphasis Techniques for Low-Power Serial Links,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1391-1399, Jun. 2006.
    [24] J. Zerbe et al., “A Flexible Serial Link for 5-10 Gb/s in Realistic Backplane Environments,” DesignCon 2004.
    [25] R. S. Kajley et al., “A Mixed-Signal Decision-Feedback Equalizer That Uses a Look-Ahead Architecture,” IEEE J. Solid-State Circuits, vol. 32, no. 3, pp. 450-459, Mar. 1997.
    [26] J. Kim et al., “Equalizer Design and Performance Trade-Offs in ADC-Based Serial Links,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 9, pp. 2096-2107, Sep. 2011.
    [27] S. Gondi and B. Razavi, “Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1999-2011, Sep. 2007.
    [28] J.-S. Choi et al., “A 0.18-μm CMOS 3.5-Gb/s Continuous-Time Adaptive Cable Equalizer Using Enhanced Low-Frequency Gain Control Method,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 419-425, Mar. 2004.
    [29] W. Peters et al., “ATCA Channel Data for Backplane Ethernet Task Force,” [Online]. Available: http://www.ieee802.org/3/ap/public/channel_model
    [30] A. DeHon et al., “Automatic impedance control,” Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1993, pp. 164-165,283.
    [31] Y. Ogata et al., “32Gb/s 28nm CMOS Time-interleaved Transmitter Compatible with NRZ receiver with DFE,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 17-21.
    [32] J. Guerber et al., “A 10-b Ternary SAR ADC With Quantization Time Information Utilization,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp.2604-2613, Nov. 2012.
    [33] K. Fukuda et al., “A 12.3-mW 12.5-Gb/s Complete Transceiver in 65-nm CMOS Process,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp.2838-2849, Dec. 2010.
    [34] J.D.H. Alexander, “Clock recovery from random binary signals,” Electron. Lett., vol. 11, Oct. 1975, pp. 541-542.

    下載圖示 校內:2020-10-31公開
    校外:2020-10-31公開
    QR CODE