簡易檢索 / 詳目顯示

研究生: 洪凱煊
Hong, Kai-Xuan
論文名稱: 多層感知器和樸素貝葉斯分類器用於阿茲海默症之神經心理資料分析
Analysis of Neuropsychological Data for Alzheimer’s Disease via Multilayer Perceptron and Naive Bayes Classifier
指導教授: 李國君
Lee, Gwo-Giun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 50
中文關鍵詞: 多層感知器樸素貝葉斯分類器阿茲海默症神經心理資料
外文關鍵詞: Multilayer Perceptron, Naïve Bayes Classifier, Alzheimer’s disease, Neuropsychological data
相關次數: 點閱:60下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默症為一種失智症,相較於其他類別的失智症,阿茲海默症占了六到七成,是一種發病進程緩慢、隨著時間不斷惡化的神經退化性疾病。初期症狀常被誤認為是正常的老化狀況,因而患者的確診並不容易,本論文藉由使用機器學習演算法,透過分析神經心理資料以及人口統計資料,讓分類器來幫助醫學上偵測患者有無阿茲海默症,目的是減少社會財政的消耗,並增加醫療資源的效率。所使用的機器學習演算法為多層感知器和樸素貝葉斯分類器,以分類器的靈敏度、特異度、準確度指標,比較不同項目與阿茲海默症之間的關係,讓往後的長期追蹤治療能夠更有依據地針對不同項目做檢查。
    關鍵字: 多層感知器、樸素貝葉斯分類器、阿茲海默症、神經心理資料

    Alzheimer’s disease is a type of dementia. It is the cause of 60% to 70% of cases of dementia. Since it is a chronic neurodegenerative disease and its initial symptoms are often mistaken for normal ageing so that it is difficult to have a definite diagnosis. This thesis proposed a machine learning algorithm through the analysis of neuropsychological data and demographic data to make classifier help detect whether subjects suffer from Alzheimer’s disease or not in medicine. The goal is to reduce the financially cost and increase the efficiency of medical resources. This thesis uses Multilayer Perceptron and Naïve Bayes Classifier with three indicators, sensitivity, specificity, and accuracy, to compare the relationship between Alzheimer’s disease and different items and make the examination of longitudinal treatment period aim at more predictive items.
    Keyword: Multilayer Perceptron, Naive Bayes Classifier, Alzheimer’s disease, Neuropsychological data

    摘要 iv Abstract v 誌謝 vii Table of Contents ix List of Tables xi List of Figures xiii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Alzheimer’s disease 2 1.3 Neuropsychological data 3 1.3.1 Mini-Mental State Examination 3 1.4 Motivation 4 1.5 Organization of this thesis 5 Chapter 2 Surveys of Related Works in the Literatures 6 2.1 Classification 6 2.1.1 Multilayer Perceptron 6 2.1.2 Naive Bayes Classifier 7 2.1.3 Support Vector Machine 8 2.1.4 Decision Tree 9 2.2 Clustering 11 2.2.1 K-means Clustering 12 2.2.2 Hierarchical Clustering 13 2.3 Alzheimer’s disease 16 Chapter 3 Methodology 18 3.1 Observation of Neuropsychological and Demographic data 18 3.2 Training Supervised Learning Classifier 19 3.2.1 Multilayer Perceptron 19 3.2.1.1 Resilient Propagation 20 3.2.1.2 Activation function 23 3.2.1.3 Min-Max Normalization 25 3.2.2 Naive Bayes Classifier 26 3.2.2.1 Maximum A Posteriori estimation 27 Chapter 4 Experimental Results and Discussion 30 4.1 Data Specification 30 4.2 Experimental Design and Results 31 4.3 Comparison and Discussion 41 Chapter 5 Conclusion and Future Work 43 5.1 Conclusion 43 5.2 Future Work 43 Acknowledgments 45 References 46

    [1] Blennow K, de Leon MJ, Zetterberg H, “Alzheimer's disease,” Lancet, vol. 368, no. 9533, pp. 387–403, 2006.
    [2] Ballard C, Gauthier S, Corbett A, et al, "Alzheimer's disease," Lancet, vol. 377, no. 9770, pp. 1019–31, 2011.
    [3] Querfurth HW, LaFerla FM, "Alzheimer's disease", The New England Journal of Medicine, vol. 362, no. 4, pp. 329–44, 2010.
    [4] World Health Organization. March 2015. Archived from the original on 18 March 2015. Retrieved 13 January 2016.
    [5] Harvey, Philip D., “Clinical applications of neuropsychological assessment”, Dialogues in Clinical Neuroscience, vol. 14, no. 1, pp. 91–99, 2012.
    [6] Pangman, VC; Sloan, J; Guse, L., "An Examination of Psychometric Properties of the Mini-Mental Status Examination and the Standardized Mini-Mental Status Examination: Implications for Clinical Practice". Applied Nursing Research, vol. 13, no. 4, pp. 209–213, 2000.
    [7] Folstein, MF; Folstein, SE; McHugh, PR, ""Mini-mental state". A practical method for grading the cognitive state of patients for the clinician". Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
    [8] Harrell, LE; Marson, D; Chatterjee, A; Parrish, JA, "The Severe Mini-Mental Status Examination: A New Neuropsychologic Instrument for the Bedside Assessment of Severely Impaired with Alzheimer's Disease". Alzheimer Disease and Associated Disorders, vol. 14, no. 3, pp. 168–175, 2000.
    [9] Alzheimer’s Association | Alzheimer’s Disease and Dementia, 2015. 〈http://www.alz.org/〉 (Accessed 5 April 2015).
    [10] Alzheimer’s, Association. "2015 Alzheimer's disease facts and figures." Alzheimer's & dementia: the journal of the Alzheimer's Association, vol. 11, no. 3, pp. 332, 2015.
    [11] Kotsiantis, Sotiris B., I. Zaharakis, and P. Pintelas. "Supervised machine learning: A review of classification techniques." Emerging artificial intelligence applications in computer engineering, vol. 160, pp. 3-24, 2007.
    [12] Gardner, Matt W., and S. R. Dorling. "Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences." Atmospheric environment, vol. 32, no. 14, pp. 2627-2636, 1998.
    [13] Rish, Irina. "An empirical study of the naive Bayes classifier." IJCAI 2001 workshop on empirical methods in artificial intelligence, vol. 3, no. 22, 2001.
    [14] Cortes, C.; Vapnik, V. "Support-vector networks". Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.
    [15] Murthy, Sreerama K. "Automatic construction of decision trees from data: A multi-disciplinary survey." Data mining and knowledge discovery, vol. 2, no. 4, pp. 345-389, 1998.
    [16] Jain, Anil K., M. Narasimha Murty, and Patrick J. Flynn. "Data clustering: a review." ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264-323, 1999.
    [17] Lloyd, Stuart P. "Least Squares Quantization in PCM." IEEE Transactions on Information Theory, vol. 28, pp. 129–137, 1982.
    [18] Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 2007.
    [19] Kanungo, Tapas, et al. "An efficient k-means clustering algorithm: Analysis and implementation." IEEE transactions on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 881-892, 2002.
    [20] Pavel Berkhin. “Survey of clustering data mining techniques. Technical report, Accrue Software”, San Jose, CA, 2002.
    [21] Trambaiolli, Lucas R., et al. "Improving Alzheimer's disease diagnosis with machine learning techniques." Clinical EEG and neuroscience, vol. 42, no. 3, pp. 160-165, 2011.
    [22] Weakley, Alyssa, et al. "Neuropsychological test selection for cognitive impairment classification: a machine learning approach." Journal of clinical and experimental neuropsychology, vo. 37, no. 9, pp. 899-916, 2015.
    [23] Breiman, Leo. "Statistical modeling: The two cultures (with comments and a rejoinder by the author)." Statistical science, vol. 16, no. 3, pp. 199-231, 2001.
    [24] Segovia, Fermín, et al. "Combining PET images and neuropsychological test data for automatic diagnosis of Alzheimer's disease." PLoS One, vol. 9, no. 2, pp. e88687, 2014.
    [25] Ortiz-Catalan, Max, Rickard Brånemark, and Bo Håkansson. "BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms." Source code for biology and medicine, vol. 8, no. 1, pp. 11, 2013.
    [26] Khong, Le MD, et al. "Multi-layer perceptron training algorithms for pattern recognition of myoelectric signals." Biomedical Engineering International Conference (BMEiCON), 6th. IEEE, 2013.
    [27] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors." Cognitive modeling, vol. 5, no. 3, pp. 1, 1988.
    [28] Riedmiller, Martin, and Heinrich Braun. "A direct adaptive method for faster backpropagation learning: The RPROP algorithm." Neural Networks, International Conference on. IEEE, 1993.
    [29] Zadeh, Mehdi Rezaeian, et al. "Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions." Water Resources Management, vol. 24, no. 11, pp. 2673-2688, 2010.
    [30] Karlik, Bekir, and A. Vehbi Olgac. "Performance analysis of various activation functions in generalized MLP architectures of neural networks." International Journal of Artificial Intelligence and Expert Systems, vol. 1, no. 4, pp. 111-122, 2011.
    [31] Allen, David M. "Mean square error of prediction as a criterion for selecting variables." Technometrics, vol. 13, no. 3, pp. 469-475, 1971.
    [32] Jayalakshmi, T., and A. Santhakumaran. "Statistical Normalization and Back Propagationfor Classification." International Journal of Computer Theory and Engineering, vol. 3, no. 1, pp. 89, 2011.
    [33] John, George H., and Pat Langley. "Estimating continuous distributions in Bayesian classifiers." Proceedings of the Eleventh conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 1995.
    [34] Gauvain, J-L., and Chin-Hui Lee. "Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains." IEEE transactions on speech and audio processing, vol. 2, no. 2, pp. 291-298, 1994.

    下載圖示 校內:2023-03-20公開
    校外:2023-03-20公開
    QR CODE