簡易檢索 / 詳目顯示

研究生: 杜宣成
Du, Xuan-Cheng
論文名稱: 渦電流檢測與有限元素法於印刷電路板內微米級導電顆粒量測及多孔複合金屬品質測量之應用
Application of Eddy Current Testing and Finite Element Analysis in the Measurement of Micron-Sized Conductive Particles in Printed Circuit Boards and Quality Assessment of Porous Composite Metals
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 91
中文關鍵詞: 非破壞性檢測渦電流有限元素分析法電磁感應印刷電路板多孔複合金屬
外文關鍵詞: Non-destructive Testing, Eddy Current, Finite Element Analysis, Electromagnetic Sensing Coil, Printed Circuit Board, Porous Composite Metals
相關次數: 點閱:40下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 印刷電路板內部的微米級含銅顆粒可能導致電路短路和信號干擾等嚴重問題,從而影響電子產品的可靠性和壽命。本文針對這一問題基於有限元素分析法設計出適配渦電流檢測系統的最佳微型感測線圈探頭並針對印刷電路板內部含銅導電顆粒進行量測。本研究通過有限元素分析,評估了線圈探頭的匝數、尺寸、量測頻率及檢測樣品中導電顆粒的分佈密度等多種設計參數。模擬分析結果顯示,不同參數對線圈探頭的電磁場分佈特性和感應效率有顯著影響。為了實現最佳的系統檢測靈敏度和分辨率,研究對這些參數進行了調整和優化,並進行了實測實驗。實驗結果證明,所設計的線圈探頭能有效檢測並區分印刷電路板內部是否含有微米級含銅導電顆粒,展示出高靈敏度和高分辨率并進行多次重現性實驗進一步確保了檢測結果的可靠性,證明了本渦電流檢測系統在排除外界干擾的情況下能保持一致性和可靠性。
    此外,粉末冶金多孔複合金屬生胚生胚品質不佳,會導致導致製品的硬度和均勻度降低和使產品出現裂紋或破裂。本文同樣針對該問題基於有限元素分析法通過數值模擬來探索檢測不同品質包括不同厚度和不同密度的粉末冶金壓鑄的多孔複合金屬樣品的渦電流檢測效果,並基於此模擬結果進行不同品質的金屬樣品實際量測,並根據實驗結果驗證渦電流檢測系統在多孔複合金屬品質量測中的有效性。

    Micron-sized copper particles within printed circuit boards (PCBs) can cause serious issues such as circuit shorting and signal interference, thereby affecting the reliability and lifespan of electronic products. To address this problem, this paper designs an optimal miniature sensor coil probe suitable for eddy current testing systems based on finite element analysis (FEA) and measures the copper conductive particles inside PCBs. This study evaluates various design parameters of the coil probe through FEA, including the number of turns, size, measurement frequency, and the distribution density of conductive particles in the sample. The simulation analysis results indicate that different parameters significantly impact the electromagnetic field distribution characteristics and induction efficiency of the coil probe. To achieve optimal system detection sensitivity and resolution, these parameters were adjusted and optimized, followed by practical experiments. The experimental results demonstrate that the designed coil probe can effectively detect and distinguish whether there are micron-sized copper conductive particles inside PCBs, showing high sensitivity and resolution. Multiple reproducibility tests further ensured the reliability of the detection results, proving that the eddy current detection system can maintain consistency and reliability when external interference is eliminated.
    Furthermore, the poor quality of powder metallurgy porous composite metal billets can lead to reduced hardness and uniformity of the products, causing cracks or fractures. This paper also addresses this issue by exploring the eddy current detection effect of porous composite metal samples of different qualities, including varying thicknesses and densities, through numerical simulation based on FEA. Based on these simulation results, actual measurements of metal samples of different qualities were conducted. The experimental results verified the effectiveness of the eddy current detection system in measuring the quality of porous composite metals.

    摘要 III Extended Abstract IV 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景 1 1-2 國內外文獻回顧 2 1-3 研究動機與目的 5 1-4 論文架構 10 第二章 渦電流檢測電磁感應原理與理論分析 11 2-1 簡介 11 2-1 電磁感應原理與影響渦電流檢測之因素 11 2-2-1 電磁感應之原理介紹 11 2-2-2 影響渦電流檢測之因素 12 2-3 渦電流線圈於多層導體阻抗理論分析 15 第三章 系統架構與有限元素法應用 18 3-1 前言 18 3-2 系統架構說明 18 3-3 有限元素法之PCB板內部導電顆粒量測模擬及線圈探頭設計流程 21 3-3-1 有限元素法原理 21 3-3-2 線圈設計模擬流程 22 3-3-3 模擬結果 27 3-4 有限元素法之多孔複合金屬品质檢測模擬 44 3-4-1 多孔複合金屬不同密度樣品檢測模擬結果 44 3-4-2 多孔複合金屬不同厚度樣品檢測模擬結果 47 第四章 系統實驗結果與討論分析 51 4-1 簡介 51 4-2 PCB板內部導電顆粒實際量測結果 51 4-2-1 實做線圈探頭介紹 51 4-2-2 實際量測樣品介紹 54 4-2-3 實際量測結果 55 4-2-4 PCB板內部導電顆粒實際量測結果分析結果分析 61 4-3 多孔複合金屬實際量測結果 62 4-3-1 線圈探頭介紹 62 4-3-2 實際量測樣品介紹 63 4-3-3 實際量測結果 64 4-3-4 多孔複合金屬實際量測結果分析 67 第五章 結論與未來展望 69 5-1 結論 69 5-2 未來研究方向 70 參考文獻 72

    [1] R. Palanisamy, et al., “Prediction of Eddy current signals for nondestructive testing of condenser tubing,” Magnetics, IEEE Transactions on Magnetics, vol. 19, 1983.
    [2] Y. Tang, et al., “Feature extraction based on the principal component analysis for pulsed magnetic flux leakage testing,” in Mechatronic Science, Electric Engineering and Computer (MEC), 2011 International Conference on, 2011.]
    [3] V. V. Nagarkar, et al., “CCD-based high resolution digital radiography system for nondestructive evaluation,” Nuclear Science, IEEE Transactions on Magnetics, vol. 44, 1997.
    [4] J. F. Coste, et al., “Description of a method for the measurement of the Rayleigh wave velocity: application to the thickness measurement of metallic coatings,” in Ultrasonics Symposium, 1994. Proceedings. 1994 IEEE, 1994.
    [5] C. V. Dodd and W. E. Deeds, “Analytical Solutions to Eddy‐Current Probe‐Coil Problems,” Journal of Applied Physics, vol. 39, 1968.
    [6] J. C. Moulder, Uzal. E, and J. H. Rose, “Thickness and conductivity of metallic layers from eddy current measurements,” Review of Scientific Instruments vol. 63, pp. 3455-3465, 1992.
    [7] 劉尹雄,「脈衝式渦電流檢測系統之設計與應用」,國立成功大學電機工程學系碩士論文,1999。
    [8] C. C. Tai, “Characterization of coatings on magnetic metal using the swept frequency eddy current method”, Review of Scientific Instruments, vol. 71, no. 8 pp. 3161-3167, 2000.
    [9] C. C. Tai and H. C. Yang, “The interaction of eddy current with metal hidden flaws for various probes”, Journal of Technology, vol. 17, no. 4, pp. 525-533, 2002.
    [10] C. C. Tai, H. C. Yang and Y. H. Lin, “Modeling the surface condition of ferromagnetic metal by the swept-frequency eddy current method”, IEEE Transactions on Magnetics, vol. 38, no. 1, pp. 205-210, 2002.
    [11] H. C. Yang and C. C. Tai, “Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate”, Measurement Science and Technology, vol. 13, no. 1, pp. 1259–1265, 2002.
    [12] C. C. Tai and S. F. Wang, “Time-Domain and Frequency-Domain Eddy Current Simulations by the Finite Element Method”, Key Engineering Materials, vol. 270-273, pp. 585-592, 2004.
    [13] Y. L. Pan and C. C. Tai, “Thickness and Conductivity Analysis of Molybdenum Thin Film in CIGS Solar Cells Using Resonant Electromagnetic Testing Method”, Magnetics, IEEE Transactions on, vol. 48, no. 2, pp. 347-350, 2012.
    [14] 陳林湋,「低頻渦電流金屬厚度檢測系統研製」,國立成功大學電機工程學系碩士論文,2012。
    [15] 李柏毅,「非接觸式微米級金屬薄膜檢測系統研製及田口法最佳感測線圈設計」,國立成功大學電機工程學系碩士論文,2017。
    [16] 林茂盛,「架構於FPGA之掃頻式阻抗分析儀暨金屬薄膜厚度估測應用」,國立成功大學電機工程學系碩士論文,2018。
    [17] 賴行健,「倒傳遞神經網路及主成份分析應用於金屬扣件硬度篩選檢測:系統設計與評估」,國立成功大學電機工程學系碩士論文,2019。
    [18] 李耘多,「基於K-近鄰分類法及梯度提升決策樹模型之印刷電路板銅膜厚度渦電流量測」,國立成功大學電機工程學系碩士論文,2020。
    [19] 莊宗霖,「隨機森林法應用於渦電流金屬扣件硬度分類」,國立成功大學電機工程學系碩士論文,2020。
    [20] 陳 偉 哲,「金屬扣件之靜/動態渦電流檢測系統」,國立成功大學電機工程學系碩士論文,2021。
    [21] Hongbo Wang, Student Member, “Noncontact Thickness Measurement of Metal Films Using Eddy-Current Sensors Immune to Distance Variation,” IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 9, pp. 2557-2564, 2015.
    [22] B. Lei, P. Yi, Y. Li and J. Xiang, “A Temperature Drift Compensation Method for Pulsed Eddy Current Technology”, Sensors (Basel), vol. 18, no. 6, 2018.
    [23] C. C. Tai, “Advanced eddy-current methods for quantitative NDE,” Department of Electrical Engineering Iowa State University Dissertation for Doctor of Philosophy, 1997.
    [24] COMSOL MULTIPHYSICS多重物理量有限元素工程分析軟體使用手冊,皮托科技股份有限公司。
    [25] COMSOL MULTIPHYSICS, Use’s Guide, Version 6.0.
    [26] G. F. Zhao, J. Ying, L. Wu and Z. H. Feng, “Eddy current displacement sensor with ultrahigh resolution obtained through the noise suppression of excitation voltage”, Sensors and Actuators A: Physical, vol. 299, 2019.
    [27] H. Wang and Z. Feng, “Ultrastable and highly sensitive eddy current displacement sensorusing self-temperature compensation”, Sensors and Actuators A: Physical, vol. 203, pp. 362-368, 2013.
    [28] H. Wang, B. Ju, W. Li and Z. Feng, “Ultrastable eddy current displacement sensor working in harshtemperature environments with comprehensive self-temperature compensation”, Sensors and Actuators A: Physical, vol. 211, pp. 98-104, 2014.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE