簡易檢索 / 詳目顯示

研究生: 李明賢
Li, Ming-Shiuan
論文名稱: 正交分頻多工同步技術之研究
Research on Synchronization of Orthogonal Frequency Division Multiplexing
指導教授: 謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 78
中文關鍵詞: 正交分頻多工
外文關鍵詞: ofdm
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近幾年來,由於OFDM技術成熟,使其廣泛應用於各種的領域範圍。但在應用的過程中乃有同步的問題必須要去克服,包含了頻率偏移、時序的偏移、及取樣的偏移等。本論文主要是針對OFDM同步的研究,大致上我們以IEEE 802.11a之應用為例分成兩大部份來進行。首先針對同步所需之信號的檢測、頻率偏移的估測及時序偏移的更正等三大重點著手,藉由MATLAB模擬的結果來證明所設計的同步方式,實驗結果顯示所提出的方法不但於AWGN的通道有不錯的效能,藉由在多重路徑底的通道條件下也有不錯的效能。

      其次是針對於IEEE 802.11a的同步能力加以改善,自己設計一個frame的組織架構,使得對於頻率偏移的更正能力可以達到 頻率間隔。最後,我們將所設計的方法與Cox 的方法作比較,其效能比Cox的方法好得很多。

      In recent years, the technology of orthogonal frequency Division Multiplexing is getting more and more mature and on various applications. However, there exist synchronization problems in OFDM has been employed including the frequency offset, timing clock error and sampling frequency offset ,which should be overcome to fit in different applications.

      The aim of this thesis is to explore the synchronization problems in OFDM .Based on the specification of IEEE 802.11a, we first investigate the research topics about the signal detection, frequency offset estimation and timing offset correction .The performance analysis is mainly demonstrated by MATLAB simulation and experimental results exhibit that the presented methods can achieve good bit-error rate under AWGN channel and the multi-path condition as well. To further improve the synchronization of OFDM symbols, we design a new frame format that can extend the correction range of OFDM symbols, we design a new frame format that can extend the correction range of the frequency offset to reach times the frequency spacing, where N denotes the length of FFT window, Simulation results also reveal better performance than that of the Cox’s work.

    Contents Abstract v Acknowledge viii Contents iv List of Table x List of Figures xi Chapter Page Chapter 1 Introduction 1 1.1 Applications for OFDM 1 1.2 The Outline 3 Chapter 2 Fundamental of OFDM Systems 4 2.1 Guard Time and Cyclic Prefix 7 2.2 Effect of Symbol Timing Offset 9 2.3 Effect of Carrier Frequency Offset 11 2.4 Channel Modeling 12 Chapter 3 IEEE 802.11a Specification 14 3.1 The Main Parameters of an OFDM System 14 3.2 Scrambler and Convolution Encoder 17 3.3 Data Interleaving 19 3.4 OFDM Modulation 20 3.5 Canalization 22 Chapter 4 Synchronization 24 4.1 Synchronization of IEEE 802.11a 26 4.1.1 Propose Methods and Simulation Resul 38 4.1.2 Complexity Analysis 42 4.2 Timing Offset Estimation 43 4.2.1 Simulation Result 53 4.2.2 Complexity Analysis 56 4.3 Frequency Offset Estimation 58 4.3.1 The Proposed Method and Simulation Result 61 4.3.2 Complexity Analysis 67 Chapter 5 Conclusions and Future Work 69 Bibliography 71

    Bibliography
    [1] W. Y. Zou and Y. Wu, “COFDM: An overview,” IEEE Trans. on Broadcast, Vol.41, No.1, pp. 1-8, Mar. 1995.

    [2] IEEE Std .802.11a, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, high speed physical layer in the 5GHz band, September 1999.

    [3] K. W. Yip, T. S. Ng, and Y. C. Wu, “Impacts of multipath fading on the timing synchronization of IEEE 802.11a wireless LANs,” IEEE Trans. on Commun., Vol.1, No.3, pp.517-521, May 2002.

    [4] C. S. Peng and K. A. Wen “Synchronization for carrier frequency offset in wireless LAN 802.11a systems,” IEEE Trans. on Commun., Vol.3, No.1 pp.1083-1087, Oct. 2002.

    [5] J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. on signal proc., Vol.45, No.7, pp.1800-1805, July 1997.

    [6] E. Mark, Wireless OFDM Systems How to Make Them Work? Kluwer Academic Publishers, Boston, 2002.

    [7] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. on commun., Vol.45, No.12, pp. 1613-1621, Dec. 1994.

    [8] H. Minn and V. K. Bhargave, “On timing offset estimation for OFDM systems,” IEEE Trans. on commun., Vol.4, No.7, pp.242-244, July 2000.

    [9] B. Park and H. Cheon, “A novel timing estimation method for OFDM systems,” IEEE Trans. on commun., Vol. 7, No.5, pp.239-241, May 2003.

    [10] P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. on Commun., Vol.42, No.10, pp.2908-2913, Oct. 1994.

    [11] W. D. Warner and C. Leung, “OFDM/FM frame synchronization for mobile radio data communication,” IEEE Trans. on Vehicular Technology, Vol.42, pp302-313, Aug. 1993.

    [12] N. Mochizuki, Y. Matsumoto, M. Mizoguchi, T. Onizawa and M. Unehira, “A high performance frequency and timing synchronization technique for OFDM,” IEEE Trans. on commun., Vol.6, No.2, pp.3443-3448, May 1998.

    [13] J. M. Paez- Borrallo, and S. Zazo, “A new time-frequency synchronization Scheme for OFDM-TDMA system,” IEEE Trans. on Vehicular Technology, Vol.3, pp. 2408-2412, May 1999.

    [14] F. Dafara and O. Adami, “A new method for simulation fine time synchronization and frequency offset estimation in OFDM with simple hardware,” IEEE Trans. on commun., Vol.4, N0.2, pp.804-809, Aug. 2003.

    [15] S. Kapoor, D. J. Marchock and Y. F. Huang, “Pilot assisted synchronization for wireless OFDM systems over fast time varying fading channels,” IEEE Trans. on Vehicular Technology, Vol.3, pp.2077-2080, May 1998.

    [16] F. Classen and H. Meyr, “Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channel,” IEEE Trans on Vehicular Technology, Vol.3, pp.1655-1659, July 1998.

    [17] C. P. Hung and Y. T. Su, “Joint frequency and symbol synchronization scheme for an OFDM system,” IEEE Trans. on commun., Vol 10, No.2, pp.309-317, Aug. 1999.

    [18] G. Santella, “A frequency and symbol synchronization system for OFDM signals: architecture and simulation results,” IEEE Trans. on commun., Vol.49, No.1, pp.254-257, Nov. 2000.

    [19] F. Daffara and O. Adami, “A new frequency detector for orthogonal multicarrier Transmission Techniques,” IEEE Trans. on Vehicular Technology, Vol.2, pp804-809, Aug. 1999.

    [20] M. Luise and R. Reggiannini, “Carrier frequency acquisition and tracking for OFDM systems,” IEEE Trans. on commun., Vol 44, No.11, pp.1590-1598, Nov. 1996.

    [21] P. Athanasios, Probability, Random Variables, and Stochastic Process, McGraw-Hill, New York, 1991

    [22] L. Hazy and M. El-Tanany, “Synchronization of OFDM systems in frequency selective fading channels,” IEEE Trans. on commun., Vol.3, No.2, pp.2094-2098, Aug. 1997.

    [23] J. J. van de Beek, M. Sandell, M. Isaksson, and P. Borjesson, “Low complex frame synchronization in OFDM systems”. IEEE Trans on commun., Vol.5, No.2, pp.982-986, Nov. 1995.

    [24] U. Mengali and A. N. Andrea, Synchronization Techniques for Digital Receivers, Plenum Press, New York, 1997.

    [25] L. Hanzo, C. H. Wong and M. S. Yee, Adaptive Wireless Transceivers, New York: Wiley, 2002.

    [26] L. Hanzo and W. Webb and T. Keller, OFDM and MC-CDMA for Broadband Multi-user Communications, WLANs and Broadcasting, New York: Wiley, 2003.

    [27] L. Hanzo and W. Webb and T. Kelle, Single and Multi-Carrier Quadrature Amplitude Modulation, New York: Wiley, 2000.

    下載圖示 校內:2005-07-08公開
    校外:2005-07-08公開
    QR CODE