簡易檢索 / 詳目顯示

研究生: 王舉東
Wang, Chu-Tong
論文名稱: 適用於非線性隨機混合系統的基於NARMAX模型之狀態空間自調式控制
NARMAX Model-Based State-Space Self-Tuning Control for Nonlinear Stochastic Hybrid Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 125
中文關鍵詞: 容錯機制非線性隨機混合系統自調式控制最佳線性化法
外文關鍵詞: Fault-tolerant, nonlinear stochastic hybrid systems, self-tuning control, optimal linearization method
相關次數: 點閱:138下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對含有未知參數、系統干擾、量測雜訊及狀態不可得的非線性隨機混合系統,提出一種基於非線性自回歸-移動平均-輸入變數(NARMAX)模型之狀態空間自調式控制架構,以設計一個具有容錯機制的最佳軌跡追蹤器。本文的研究內容包括以下兩個主要部份:一、 針對上述非線性隨機混合系統提出一種基於有理數式非線性自回歸-移動平均-輸入變數模型之狀態空間自調式控制架構。此非線性模型需先經代數運算轉換為參數線性模型,以供遞迴式演算法辨識模型的參數。自調式控制設計過程中,基於狀態估測及控制器增益設計的需要,本論文提出建構最佳標準觀測器型式之狀態空間模型的方法,以設計最佳軌跡追蹤器。二、 針對前述非線性隨機混合系統,提出一種較為簡單的多項式非線性自回歸-移動平均-輸入變數模型之主動容錯的狀態空間自調式控制架構,以設計一個具有故障偵測及效能恢復之脈波寬度調變式的最佳軌跡追蹤器。設計過程中,為了縮短辨識模型參數的時間及提高受控系統性能的考量,透過觀測器/卡爾曼濾波器辨識演算法及最佳線性化法,導出求取遞迴式演算法之參數初始值的方法。關於系統故障的偵測,本論文給定一種判定系統是否發生故障的準則,至於恢復系統因故障而衰退的性能,則提出重新設定改良型卡爾曼濾波器演算法之協方差矩陣的方法。

    In this dissertation, a state-space self-tuning control scheme based on the nonlinear autoregressive moving average with exogenous inputs (NARMAX) model has been proposed and used to design the optimal fault-tolerant trajectory tracker for nonlinear stochastic hybrid systems with unknown system parameters, plant noises, measurement noises, and inaccessible system states. The contents of this dissertation include two main parts: i) The novel state-space self-tuning control scheme based on the rational NARMAX model has been proposed for the nonlinear stochastic hybrid systems mentioned above. For parameter estimation, the nonlinear parameter model needs to be transformed into a linear-in-the-parameter model via algebra operations. In the design process of state-space self-tuning control, the procedure to constructing the optimal state-space model in canonical observer form and the optimal trajectory tracker design have been developed for state estimation and self-tuner design. ii) For the nonlinear stochastic hybrid systems mentioned previously, the efficient state-space self-tuning control mechanism involving an active fault tolerance based on the polynomial NARMAX model has been addressed and utilized to achieve an active fault-tolerant pulse-width-modulated (PWM) trajectory tracker. A formula to computing the initial parameter used in recursive estimation algorithm has been derived via the observer/Kalman filter identification (OKID) algorithm and the optimal linearization method so as to not only reduce the identification process time, but also enhance the controlled system performances. A criterion is given to determine whether the system faults occur or not. For system faults, the method to initializing estimation error covariance matrices used in the modified Kalman filter algorithm has been also developed in order to prevent the performance degeneration due to the system faults.

    Abstract (Chinese) I Abstract II Acknowledgement (Chinese) III Contents IV List of Acronyms VII List of Figures VIII Chapter 1 Introduction 1 1.1 Preliminary 1 1.2 Contributions of this Dissertation 5 1.3 Outline of this Dissertation 6 Chapter 2 Review of Some Control Theory 7 2.1 Digital Linear Suboptimal Tracker Design 7 2.2 Design of PWM Controller through PAM Controller 8 2.3 Optimal Linearization Method 12 2.4 Fundamental Concepts of Discrete-Time State-Space Observer for Self-Tuning Control 16 Chapter 3 NARMAX Models for Nonlinear Stochastic Hybrid Systems 23 3.1 Stochastic NARMAX Models 23 3.2 Rational NARMAX Models for STC Scheme 24 3.3 Convergence Property of the RELS Algorithm with Rational NARMAX Models 28 Chapter 4 Rational NARMAX Model-Based State-Space Self-Tuning Control for Nonlinear Stochastic Hybrid Systems 37 4.1 The Typical Structure of the State-Space STC 37 4.2 The Construction of Discrete-Time State-Space Observer and STC Scheme Based on Rational NARMAX Models 39 4.3 Illustrative Examples 48 4.3.1 Example 4.1 (two-input-two-output system) 48 4.3.2 Example 4.2 (two-input-two-output system) 56 4.3.3 Example 4.3 (two-input-four-output system) 59 4.4 Summary 65 Chapter 5 An Active Fault-Tolerant PWM Tracker for Unknown Nonlinear Stochastic Hybrid Systems: Polynomial NARMAX Model and OKID Based State-Space Self-Tuning Control 66 5.1 Observer/Kalman Identification Theory 66 5.2 Polynomial NARMAX Model for Self-Tuning Control 73 5.3 Optimal Observer Design Based on OKID Method and OLM 74 5.3.1 Optimal Observer Design Based on Optimal Linearized Model of the Identified Polynomial NARMAX Model 75 5.3.2 Estimation of Initial Parameter Values of Polynomial NARMAX Model via OKID Method 81 5.4 Fault-Tolerant Control for Nonlinear Stochastic Hybrid Systems 83 5.4.1 Problem Statement 83 5.4.2 Modified Self-tuning Control Scheme with Active Fault Tolerance 85 5.5 Structure and Design Procedures of the NARMAX Model-Based State-Space STC Scheme with FTC for Unknown Nonlinear Stochastic Hybrid Systems 90 5.6 Illustrative Examples 94 5.6.1 Example 5.1: Parameters Estimation of NARMAX and ARMAX Models by the RELS Algorithm for a Two-Input-Two-Output Unknown System 95 5.6.2 Example 5.2: Polynomial NARMAX Model-Based State-Space STC Scheme with PWM Controller and Active Fault-Tolerant Mechanism for the MSFF System 101 5.7 Summary 114 Chapter 6 Conclusions 115 6.1 Conclusions 115 6.2 Recommendations for Further Work 116 References 117

    [1] Ahmed, M. S., “Self-tuning control using the right-matrix-fraction innovation description,” IEE Proceedings D: Control Theory and Applications, vol. 140, no. 6, pp. 399-404, 1993.
    [2] Anderson, B. D. O. and Moore, J. B., Optimal Filtering, Prentice-Hall, Englewood Cliffs, 1979.
    [3] Astolfi, A., Karagiannis, D., and Ortega, R., Nonlinear and Adaptive Control with Applications, Springer-Verlag, London, 2008.
    [4] Äström, K. J. and Wittenmark, B., Adaptive Control, 2nd ed., Addison-Wesley, Reading, 1995.
    [5] Athans, M. and Falb, P. L., Optimal Control: An Introduction to the Theory and Its Applications, McGraw-Hill, New York, 1966.
    [6] Bachelier, O., Bosche, J., and Mehdi, D., “On pole placement via eigenstructure assignment approach,” IEEE Transactions on Automatic Control, vol. 51, no. 9, pp. 1554-1558, 2006.
    [7] Billings, S. A. and Zhu, Q. M., “Rational model identification using an extended least-squares algorithm,” International Journal of Control, vol. 54, no. 3, pp. 529-546, 1991.
    [8] Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M., Diagnosis and Fault-Tolerant Control, 2nd ed., Springer-Verlag, Berlin, Heidelberg, 2006.
    [9] Canelon, J. I., Shieh, L. S., Zhang, Y., and Akujuobi, M., “A new neural network-based approach for self-tuning control of nonlinear multi-input multi-output dynamic systems,” American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 2009.
    [10] Chalam, V. V., Adaptive Control Systems: Techniques and Applications, Marcel Dekker, New York, 1987.
    [11] Chang, Y. C. and Yen, H. M., “Adaptive output feedback tracking control for a class of uncertain nonlinear systems using neural networks,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 6, pp. 1311-1316, 2005.
    [12] Chen, C. W., Huang, J. K., Phan, M. Q., and Juang, J. N., “Integrated system identification and state estimation for control flexible space structures,” Journal of Guidance, Control and Dynamics, vol. 15, no. 1, pp. 88-95, 1992.
    [13] Chen, S. and Billings, S. A., “Representations of nonlinear systems: the NARMAX model,” International Journal of Control, vol. 49, no. 3, pp. 1013-1032, 1989.
    [14] Chuang, C. C., Jeng, J. T., and Lee, T. T., “Robust adaptive tracking control via CPBUM neural network for MIMO nonlinear systems,” in Proceedings of the IEEE 2004 International Conference on Machine Learning and Cybernetics, Shanghai, vol. 7, pp. 4096-4101, 2004.
    [15] Chui, C. K. and Chen, G., Kalman Filtering with Real-Time Applications, 4th ed., Springer-Verlag, Berlin, Heidelberg, 2009.
    [16] Dixon, W. E., Behal, A., Dawson, D. M., and Nagarkatti, S. P., Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach, Boston, 2003.
    [17] Ducard, G. J. J., Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles, Springer-Verlag, London, 2009.
    [18] Elkaim, G. H., “System identification-based control of an unmanned autonomous wind-propelled catamaran,” Control Engineering Practice, vol. 17, no. 1, pp. 158-169, 2009.
    [19] Elliott, H. “Hybrid adaptive control of continuous-time systems,” IEEE Transactions on Automatic Control, vol. 27, no. 2, pp. 419-426, 1982.
    [20] Gawthrop, P. J., “Hybrid self-tuning control,” IEE Proceedings D: Control Theory and Applications, vol. 127, no. 5, pp. 229-236, 1980.
    [21] Gosiewski, Z. and Paszowski, M., “Identification of physical parameters of unstable systems: theoretical background,” Systems Analysis Modelling Simulation, vol. 43, no. 3, pp. 301-311, 2003.
    [22] Grewal, M. S. and Andrews, A. P., Kalman Filtering: Theory and Practice Using MATLAB, John Wiely & Sons, New York, 2001.
    [23] Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F., and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid systems,” International Journal of Bifurcation and Chaos, vol. 11, no. 4, pp. 1079-1113, 2001.
    [24] Guo, S. M., Tsai, J. S. H., Lin, Y. C., Tsai, T. J., and Chen, C. W., “Intelligent-based PID fault tolerant tracking control for unknown nonlinear MIMO systems,” in Proceedings of the IEEE International Conference on Control and Automation, Christchurch, New Zealand, December 9-11, 2009.
    [25] Heij, C., Ran, A., and Schagen, F. V., Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control, , Basel, 2007.
    [26] Ikonen, E. and Najim, K., Advanced Process Identification and Control, Marcel Dekker, New York, 2002.
    [27] Ioannou, P. and Fidan, B., Adaptive Control Tutorial, SIAM Press, Philadelphia, 2006.
    [28] Izadi, I., Zhao, Q., and Chen, T., “An optimal scheme for fast rate fault detection based on multirate sampled data,” Journal of Process Control, vol. 15, no. 3, pp. 307-319, 2005.
    [29] Joo, Y. H., Shieh, L. S., and Chen, G., “Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems,” IEEE Transactions on Fuzzy Systems , no. 4, vol. 7, pp. 394-408, 1999.
    [30] Juang, J. N., Applied System Identification, Prentice-Hall, Englewood Cliffs, 1994.
    [31] Juang, J. N. and Phan, M. Q., Identification and Control of Mechanical Systems, Cambridge University Press, New York, 2001.
    [32] Kailath, T., “An innovation approach to least-squares estimation. Part I: Linear filtering in additive white noise,” IEEE Transactions on Automatic Control, no. 6, vol. 13, pp. 646-655, 1968.
    [33] Korenberg, M. J., Bruder, S. B., and McLlroy, P. J., “Exact orthogonal kernel estimation from finite data records: Extending Weiner's identification of nonlinear systems,” Annals of Biomedical Engineering, vol. 16, no. 2, pp. 201-214, 1988.
    [34] Lee, S. H., “Multirate digital control system design and its application to computer disk drives,” IEEE Transactions on Control Systems Technology, vol. 14, no. 1, pp. 124-133, 2006.
    [35] Leontaritis, I. J. and Billings, S. A., “Input-output parametric models for nonlinear systems part I: deterministic nonlinear systems,” International Journal of Control, vol. 41, no. 2, pp. 303-328, 1985.
    [36] Leontaritis, I. J. and Billings, S. A., “Input-output parametric models for nonlinear systems part II: stochastic nonlinear systems,” International Journal of Control, vol. 41, no. 2, pp. 329-344, 1985.
    [37] Leontaritis, I. J. and Billings, S. A., “Model selection and validation methods for non-linear systems,” International Journal of Control, vol. 45, no. 1, pp. 311-341, 1987.
    [38] Lewis, F. L. and Syrmos, V. L., Optimal Control, 2nd ed., John Wiley & Sons, New York, 1995.
    [39] Ljung, L., System Identification: Theory for the User, 2nd edition, Prentice-Hall, Englewood Cliffs, 1999.
    [40] Ljung, L. and T., Theory and Practice of Recursive Identification, The MIT Press, Cambridge, 1983.
    [41] Mahmoud, M. M., Jiang, J., and Zhang, Y., Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis, Springer-Verlag, Berlin, Heidelberg, 2003.
    [42] Mohamed Vall, O. M. and M’hiri, R., “An approach to polynomial NARX/NARMAX systems identification in a closed-loop with variable structure control,” International Journal of Automation and Computing, vol. 5, no. 3, pp. 313-318, 2008.
    [43] Nadimi, E. S. and Søgaard, H. T., “Observer Kalman filter identification and multiple-model adaptive estimation technique for classifying animal behaviour using wireless sensor networks,” Computers and Electronics in Agriculture, vol. 68, no. 1, pp. 9-17, 2009.
    [44] Narendra, K., Khalifa, I. H., and Annaswamy, A. M., “Error models for stable hybrid adaptive systems,” IEEE Transactions on Automatic Control, vol. 30, no. 4, pp. 339-347, 1985.
    [45] Ogunfunmi, T., Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches, Springer, New York, 2007.
    [46] Omani, F. K. and Sinha, N. K., “Modified approach to state-space self-tuning control with pole assignment,” IEE Proceedings D: Control Theory and Applications, vol. 132, no. 6, pp. 257-262, 1985.
    [47] Omani, F. K. and Sinha, N. K., “A modified approach to state-space self-tuning control with pole assignment,” IEE Proceedings D: Control Theory and Applications, vol. 134, no. 1, pp. 31-37, 1987.
    [48] Ren, T. J., Chen, T. C., and Chen, C. J., “Motion control for a two-wheeled vehicle using a self-tuning PID controller,” Control Engineering Practice, vol. 16, no. 3, pp. 365-375, 2008.
    [49] Schoen, M. P., “Application of genetic algorithms to observer Kalman filter identification,” Journal of Vibration and Control, vol. 14, no. 7, pp. 971-997, 2008.
    [50] Shieh, L. S., Bao, Y. L., and Chang, F. R., “State-space self-tuning regulators for general multivariable stochastic systems,” IEE Proceedings D: Control Theory and Applications, vol. 136, no. 1, pp. 17-27, 1989.
    [51] Shieh, L. S., Bao, Y. L., and Coleman, N. P., “Model transformations for state-space self-tuning control of multivariable stochastic systems,” Stochastic Analysis and Applications, vol. 6, no. 1, pp. 91-101, 1988.
    [52] Shieh, L. S., Lin, I. C., and Tsai, J. S. H., “Design of PWM controller for sampled-data system using digitally redesigned PAM controller,” IEE Proceeding D: Control Theory and Applications, vol. 142, no. 6, pp. 654-660, 1995.
    [53] Shieh, L. S. and Tsay, Y. T., “Transformations of a class of multivariable control systems to block companion forms,” IEEE Transactions on Automatic Control, vol. 27, no. 1, pp. 199-203, 1982.
    [54] Shieh, L. S., Wang, C. T., and Tsay, Y. T., “Multivariable state feedback self-tuning controllers,” Stochastic Analysis and Applications, vol. 3, no. 2, pp. 189-212, 1985.
    [55] Shieh, L. S., Wang, W. M., and Appu Panicker, M. K., “Design of PAM and PWM digital controllers for cascaded analog systems,” ISA Transactions, vol. 37, no. 3, pp. 201-213, 1998.
    [56] Shieh, L. S., Zhao, X. M., and Sunkel, J. W., “Hybrid state-space self-tuning control using dual-rate sampling,” IEE Proceedings D: Control Theory and Applications, vol. 138, no. 1, pp. 50-58, 1991.
    [57] Simon, D., Optimal State Estimation: Kalman, , and Nonlinear Approaches, John Wiely & Sons, Hoboken, 2006.
    [58] , T. and Stoica, P., System Identification, Prentice-Hall, Englewood Cliffs, 1989.
    [59] Sontag, E. D., Polynomial Response Maps–Lecture Notes in Control and Information Sciences vol. 13, Springer-Verlag, Berlin, Heidelberg, 1979.
    [60] Teixeira, M. C. M. and Zak, S. H., “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 133-142, 1999.
    [61] Tiano, A., Sutton, R., Lozowicki, A., and Naeem, W., “Observer Kalman filter identification of an autonomous underwater vehicle,” Control Engineering Practice, vol. 15, no. 6, pp. 727-739, 2007.
    [62] Tsai, J. S. H., Lee, Y. Y., Cofie, P., Shieh, L. S., and Chen, X. M., “Active fault tolerant control using state-space self-tuning control approach,” International Journal of System Science, vol. 37, no. 11, pp. 785-797, 2006.
    [63] Tsay, Y. T. and Shieh, L. S., “State-space approach for self-tuning feedback control with pole assignment,” IEE Proceedings D, Control Theory Applications, vol. 128, no.3, pp. 93-101, 1981.
    [64] Tsay, Y. T., Shieh, L. S., and Barnett, S., Structural Analysis and Design of Multivariable Control Systems: An Algebraic Approach, Springer-Verlag, Berlin, Heidelberg, 1988.
    [65] Valasek, J. and Chen, W., “Observer/Kalman filter identification for on-line system identification of aircraft,” Journal of Guidance, Control and Dynamics, vol. 26, no. 2, pp. 347-353, 2003.
    [66] Velden, van der J. A. J., The Application of a System Identification Technique for Modelling a Nonlinear Acoustic Transducer, Eindhoven University of Technology, 1992.
    [67] Wang, J. S. and Hsu, Y. L., “Dynamic nonlinear system identification using a Wiener-type recurrent network with OKID algorithm,” Journal of Information Science and Engineering, vol. 24, no. 3, pp. 891-905, 2008.
    [68] Wang, X. S., Cheng, Y. H., and Peng, G. Z., “Modeling and self-tuning pressure regulator design for pneumatic-pressure-load systems,” Control Engineering Practice, vol. 15, no. 9, pp. 1161-1168, 2007.
    [69] Warwick, K., “Self-tuning regulators–a state-space approach,” International Journal of Control, vol. 33, no. 5, pp. 839-858, 1981.
    [70] Wellstead, P. E. and Zarrop, M. B., Self-Tuning System: Control and Signal Processing, John Wiely & Sons, New York, 1991.
    [71] Wu, J. L. and Lee, T. T., “Optimal static output feedback simultaneous regional pole placement,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 5, pp. 881-893, 2005.
    [72] Yen, G. G. and Ho, L. W., “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 296-312, 2003.
    [73] Yu, D. L., Chang, T. K., and D. W. Yu, “Fault tolerance control of multivariable processes using auto-tuning PID controller,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 1, pp. 32-43, 2005.
    [74] Zhang, J., Ding, F., and Shi, Y., “Self-tuning control based on multi-innovation stochastic gradient parameter estimation,” Systems & Control Letters, vol. 58, no. 1, pp. 69-75, 2009.
    [75] Zheng, J. M., Zhao, S. D., and Wei, S. G., “Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press,” Control Engineering Practice, vol. 17, no. 12, pp. 1398-1404, 2009.
    [76] Zhou, M. and Han, F., “Adaptive control for EDM process with a self-tuning regulator,” International Journal of Machine Tools and Manufacture, vol. 49, no. 6, pp. 462-469, 2009.
    [77] Zhu, Q. M., “An implicit least squares algorithm for nonlinear rational model parameter estimation,” Application Mathematical Modeling, vol. 29, no. 7, pp. 673-689, 2005.
    [78] Zhu, Q. M. and Billings, S. A., “Parameter estimation for stochastic nonlinear rational models,” International Journal of Control, vol. 57, no. 2, pp. 309-333, 1993.

    下載圖示 校內:2013-07-26公開
    校外:2015-07-26公開
    QR CODE