| 研究生: |
許育賓 Hsu, Yu-Pin |
|---|---|
| 論文名稱: |
改善氮化鎵系列發光二極體亮度之研究 Improvement of output intensity for GaN-based LED devices |
| 指導教授: |
張守進
Chang, Shoou-Jinn 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 布拉格反射鏡 、共振腔發光二極體 、均勻電流散佈 、氮化鎵 |
| 外文關鍵詞: | Resonant-Cavity Light-Emitting Diodes, Distributed Bragg reflector, GaN, uniform current spreading |
| 相關次數: | 點閱:137 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對氮化鎵系列的發光二極體,在亮度輸出方面在一系列的探討,藉此能夠找出最好之方式來增加光的輸出。在此篇論文上,我們提出各種不同的製程方式來增加光的輸出,包含不同的透明接觸電極、抗反射層、高反射層、類似共振腔發光二極體、不同圖案、覆晶發光二極體。
在透明電極方面,我們採用二種不同的金屬製程,一種是一般傳統的鎳/金製程,另一種則是銦氧錫製程。在兩個比較中,我們發現銦氧錫製程對於光的輸出有很大的幫助,但對於電性方面則呈現較差之狀態。在發光二極體正面,則因為氮化鎵和空氣中的折射係數分別為2.4與1造成在介面上會部分的光會折會回來造成光的損失,故因此在兩個介面面蒸鍍一層二氧化錫藉此提升光之亮度。
此外,我們亦在發光二極體背面蒸鍍高反射率的薄膜,藉著高反射率的薄膜能夠使往下的光再反射回去增加光的輸出。另一面,我們亦在上方蒸鍍不同反射率的薄膜,利用共振的原理來增加光的輸出。
另外,我們設計不同的光罩圖樣,使得P電極到N電極的電流流經的途徑一致,能夠達到電流之均勻性,藉此增加光的輸出。最後我們欲利用新的發光二極體結構,因為沒有P電極之遮蔽效應,所以能夠增加光的輸出。
In this dissertation, we will discuss a series improvement of output light intensity for GaN-based LED devices to find out the best way to increase the light intensity. In this dissertation, we provide several kinds of processes to increase the output light intensity, include of transparent contact layers, antireflection layers, high reflection layers, similar RCLED (Resonant Cavity LED), different pattern, and Flip Chip LED devices.
In transparent contact layers, two different metal processes are used. One is the traditional process Ni/Au, and the other is ITO process. The comparison of Ni/Au and ITO, we find out there is a lot of improvement in output light intensity of ITO process, but there is poor performance in electrical characteristics of ITO process. On topside of LED, the portion of light loss is reflected back at the interface due to the difference of refractive index between GaN (about 2.4) and air (1), therefore, we coat SiO2 between two mediums to increase the light intensity.
Besides, the coating high reflectance film on bottom side LED is used to increase the light intensity. The light is reflected back due to high reflectance. The other, we use resonant theory to coat different pair DBR with different reflectance to increase the light intensity.
In addition, we design different mask pattern. These designs making the current paths from P-pad to N-pad obtain a uniform current spreading to increase the light intensity. Finally, the new flip chip structure will increase the light intensity due to no p-pad.
[1] Shirakawa, Tsuguru, Materials Science and Engineering:B. 91, 470, 2002.
[2] H. Wenisch, M. Fehrer, M. Klude, K. Ohkawa, D. Hommel, Journal of Crystal Growth. 214, 1075, 2000.
[3] K. Katayama, H.Matsubara, F. Nakanishi, T. Nakamura, H. Doi, A. Saegusa, T. Mitsui, T. Matsuoka, Journal of Crystal Growth. 214, 1064, 2000.
[4] D. Schmitz, E. Woelk, G. Strauch, M. Deschler, H. Jurgensen, Materials Science and Engineering:B. 43, 228, 1997.
[5] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns. J. Appl. Phys. 76, 1363, 1994.
[6] J. S. Foresi, T. D. Moustakas, Appl. Phys. Lett. 62, 702, 1993.
[7] B. Monemar, Materials Science and Engineering:B. 59, 122, 1999.
[8] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns. J. Appl. Phys. 76, 1363, 1994.
[9] R. juza, H. Hahn, Anorg. Allegem. Chem., 234, 282, 1940.
[10] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett., 15, 367, 1969.
[11] J. I. Pnakove, E. A. Miller, D. Richman and J. E. Berketheiser, J. Lumin, 4, 63, 1971.
[12] H. Amano et. al. , Appl. Phys. Lett. 48, 353, 1986.
[13] 史光國,現代半導體發光及雷射二極體材料技術,4-1,2001.
[14] Wilmsen, Carl W. Temkin, H. Coldren, Vertical-cavity surface-emitting lasers : design, fabrication, characterization, and applications,161, 1998.
[15] Wilmsen, Carl W. Temkin, H. Coldren, Vertical-cavity surface-emitting lasers : design, fabrication, characterization, and applications, 203, 1998.
[16] Wilmsen, Carl W. Temkin, H. Coldren, Vertical-cavity surface-emitting lasers : design, fabrication, characterization, and applications,171, 1988.
[17] Hyunsoo Kim, Ji-Myon Lee, Chul Huh, Sang-Woo Kim, Seong-Ju Park, and Hyunsang Hwang. Appl. Phys. 77, 1903, 2000.
[18] http://www.esrf.fr/computing/scientific/xop.
[19] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, and W. C. Hung. J. Appl. Phys. 85, 1970,1999.
[20] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schurman. Appl. Phys. Lett. 69, 1119,1996.
[21] A. Smith, C. A. Wolden, M. D. Bremser, A. D. Hanser, R. F. Davis, and W. V. Lampert. Appl. Phys. Lett. 71, 3631, 1997.
[22] Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Kwang-Kuo Shih, Li-Chien Chen, Fu-Rong Chen, and Ji-Jung Kai. J. Appl. Phys. 86, 4491, 1999.
[23] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin. J. Appl. Phys. 83, 3172, 1998.
[24] P. J. Hartlieb, A. Roskowski, R. F. Davis, and R. J. Nemanich. J. Appl. Phys. 91, 9151, 2002.
[25] D.W. Kim, Y. J. Sung, J.W. Park, G.Y. Yeom. Thin Solid Films. 398, 87, 2001.
[26] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, and C. M. Chang. Appl. Phys. Lett. 72, 3317, 1998.
[27] Ray-Hua Horng, Dong-Sing Wuu, Yi-Chung Lien, and Wen-How Lan. Appl. Phys. Lett. 79, 2925, 2001.
[28] Necmi Biyikli, Tolga Kartaloglu, Orhan Aytur, Ibrahim Kimukin, and Ekmel Ozbay. Appl. Phys. Lett. 79, 2838, 2001.
[29] 羅永輝,工業材料雜誌,173期,90年,五月.