簡易檢索 / 詳目顯示

研究生: 丁羅邦彥
Ting, Lo Pang-Yen
論文名稱: 類連續導通降壓型轉換器之動態飛輪控制晶片設計
IC Design for Pseudo-Continuous Conduction Buck Converter with Dynamic Freewheeling Control
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 72
中文關鍵詞: 降壓型轉換器類連續導通模式飛輪切換
外文關鍵詞: buck converter, pseudo-continuous conduction mode (PCCM), freewheeling switching
相關次數: 點閱:80下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當降壓型轉換器工作於類連續導通模式,其控制對輸出轉移函數中只會產生一個極點,使得系統補償後具有比連續導通模式較快的暫態響應,此特性與不連續導通模式相同,且應用功率可以高於不連續導通模式。類連續導通模式最常用之控制方法為固定參考電流控制,此控制需要電流感測元件以決定飛輪時間,然而此控制工作於輕載時,因為飛輪時間太長,導致系統效率低落。本論文提出一類連續導通降壓型轉換器之動態飛輪時間控制晶片以解決上述問題。本論文提出之動態飛輪時間控制是利用回授訊號控制飛輪時間,使飛輪時間在暫態時隨著負載變化而進行動態調變,因此不需要額外使用電流感測元件。本控制晶片在輕載時會減少飛輪電流值,且在極輕載時進入不連續導通模式,將飛輪電流值降為零,使降壓型轉換器的輕載效率提升。最後,本控制晶片使用TSMC 0.25 μm CMOS 高壓製成實現並將其應用於一輸入電壓12 V,輸出電壓3.3 V,輸出功率為6.6 W的降壓型電源轉換器以驗證此控制晶片之可行性。

    The buck converter operating in pseudo-continuous conduction mode (PCCM) increases the ability of current handling compared with discontinuous conduction mode (DCM). Same as DCM operation, the control-to-output transfer function of PCCM buck converter exhibits a single pole, which make the transient response faster than that of CCM operation. The most commonly used control for PCCM buck is constant reference current (CRC) control, which needs sensing device to determine the freewheeling time. However, CRC control suffers from low efficiency under light load condition because of long freewheeling time. In this thesis, the dynamic freewheeling-time (DFT) control for PCCM buck converter is proposed to solve the issue mentioned above. The proposed DFT control uses feedback signal to determine the freewheeling time, which make the freewheeling time vary with load condition at transient state. Therefore, the sensing device is needless in DFT control. The proposed DFT control decreases the freewheeling current value under the light load condition. Furthermore, the proposed DFT control can operate in DCM at very light load condition and the freewheeling current is zero. Thus, the light load efficiency of buck converter can be improved. Finally, this controller is fabricated with TSMC 0.25 μm CMOS high voltage mixed signal general purpose process, and applied to an input voltage of 12 V, output voltage of 3.3 V, and output power of 6.6 W buck converter to verify the feasibility of proposed control IC.

    Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization 4 Chapter 2 Fundamental Concepts of PCCM Buck Converter 5 2.1 PCCM Buck Converter 5 2.2 Conventional CRC Control for PCCM Buck Converter 14 Chapter 3 Analysis and Design of the Proposed Controller 16 3.1 Introduction of the Proposed Control 16 3.2 Introduction and Design of the Control Function Blocks 23 3.2.1 PWM & Oscillator Circuit 26 3.2.2 Synchronous Rectification 29 3.2.3 Compensator 31 3.2.4 UVLO Circuit 32 3.2.5 Soft-Start Circuit 34 3.2.6 HV Buffer 35 3.3 CMOS Circuit Design 36 3.3.1 Two-Stage Op-Amp 36 3.3.2 Comparator 39 3.3.3 Edge Detector 43 3.3.4 Buffer 44 3.4 Chip Layout 46 Chapter 4 System Simulation and Experimental Results 47 4.1 System Simulation Results 47 4.2 Experimental Results 60 Chapter 5 Conclusions and Future Works 68 5.1 Conclusions 68 5.2 Future Works 69 REFERENCES 70

    [1] R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer, 2000.
    [2] M. Hankaniemi, M. Karppanen, and T. Suntio, “Dynamical Characterization of Voltage-Mode Controlled Buck Converter Operating in CCM and DCM,” in Proc. 12th Power Electron. Motion Control Conf., 2006, pp. 816–821.
    [3] G. W. Wester, and R. D. Middlebrook, “Low-Frequency Characterization of Switched-Mode DC-DC Converters,” IEEE Trans. on Aeros. and Electron. Syst., vol. AES-9, no. 3, pp. 376-385, May 1973.
    [4] S. Cuk, and R. D. Middlebrook, "A General Unified Approach to Modelling Switching-Converter Power Stages," in Proc. IEEE PESC’76, vol. 1, pp. 18-34, 1976.
    [5] S. Cuk, and R. D. Middlebrook, "A General Unified Approach to Modeling Switching DC-DC Converters in Discontinuous Conduction Mode," in Proc. IEEE PESC’77, pp. 36-57, 1977.
    [6] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch. II. Discontinuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3. pp. 497-505, May 1990.
    [7] J. Sun, D. M. Mitchell, M. F. Gruel, P. T. Krein, and R. M. Bass, “Averaged Modeling of PWM Converters Operating in Discontinuous Conduction Mode,” IEEE Trans. on Power Electron., vol. 16, no. 4, pp. 482-492, Jul. 2001.
    [8] D. S. Ma and W.-H. Ki, “Fast-Transient PCCM Switching Converter with Freewheel Switching Control,” IEEE Trans. Circuits Syst. II. Exp. Briefs., vol. 54, no. 9, pp. 825-829, Sep. 2007.
    [9] S. Maity and Y. Suraj, “A Fixed Frequency Dual-Mode DC–DC Buck Converter with Fast-Transient Response and High Efficiency Over a Wide Load Range,” in Proc. Appl. Power Electron. Conf. Expo., pp. 415-420, 2013.
    [10] Y. Yang, L. Sun, and X. Wu, “A Single-Inductor Dual-Output Buck Converter with Self-Adapted PCCM Method,” in Proc. IEEE Electron Devices and Solid-State Circuit Conf. (EDSSC), pp.299-302, Sep. 2009.
    [11] S. Liao, X. Zha, F. Liu, W. Liu, and K. Feng, “Gradient-Reference-Current Control for Tri-State Buck Converter to Improve Dynamic Response Over Wide Load Range,” IEEE ECCE, pp.1-6, 2016.
    [12] Z. Li, G. Zhou, M. Leng, and X. Liu, “Fixed Frewheeling-Time Control Strategy for Switching Converter Operating in Pesudo-Continuous Conduction Mode,” IEEE 8th International Power Electronics and Motion Control Conference, pp. 2114-2119, 2016.
    [13] T. Suntio, “Unified Average and Small-Signal Modeling of Direction-Time Control,” IEEE Trans. on Ind. Electron., vol. 53, no. 1, pp. 287-295, Feb. 2006.
    [14] M. Hankaniemi, M. Sippola, and T. Suntio, “Characterization of Regulated Converters to Ensure Stability and Performance in Distributed Power Supply Systems,” in Proc. IEEE INTELEC’05, pp. 533-538, 2005.
    [15] M. Hankaniemi, M. Sippola, and T. Suntio, “Load-Impedance Based Interactions in Regulated Converters,” in Proc. IEEE INTELEC’05, pp. 569-573, 2005.
    [16] W.-H. Ki, “Signal Flow Graph in Loop Gain Analysis of DC-DC PWM CCM Switching Converters,” IEEE Trans. on Circuits Syst. I, Fundam. Theory Appl., no. 6, pp. 644-654, Jun. 1998.
    [17] V. Tam, “Loop Gain Simulation and Measurement of PWM Switching Converters,” M. Phil thesis, HKUST, Hong Kong, 1999.
    [18] J. Sun et al., “Modeling of PWM Converters in Discontinuous-Conduction Mode. A Reexamination,” in Proc. IEEE Power Electron. Specialists Conf., 1998, vol. 1, pp. 615-622.
    [19] D. Ma et al., “Single-Inductor Dual-Output CMOS Switching Converters in Discontinuous Conduction Mode with Time-Multiplexing Control,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan. 2003.
    [20] C. Lee and P. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current Sensing Technique,” IEEE J.Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
    [21] D. Ma, W.-H. Ki, and C. Y. Tsui, “A Pseudo-CCM/DCM SIMO Switching Converter with Freewheel Switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, Jun. 2003.
    [22] K. Viswanathan, R. Oruganti, and D. Srinivasan, “A Novel Tri-State Boost Converter with Fast Dynamics,” IEEE Trans. on Power Electron., vol. 17, no. 5, pp. 677-683, Sep. 2002.
    [23] K. Viswanathan, R. Oruganti and D. Srinivasan, "Tri-State Boost Converter with No Right Half Plane Zero," in Proc. IEEE International Conference 4th, vol. 2, pp. 687-693, 2001.
    [24] K. Viswanathan, R. Oruganti, and D. Srinivasan, “Dual-Mode Control of Tri-State Boost Converter for Improved Performance,” in IEEE PESC’03, pp. 944-950, 2003.
    [25] M. He, F. Zhang, J. Xu, P. Yang, and T. Yan, "High-Efficiency Two-Switch Tri-State Buck-Boost Power Factor Correction Converter with Fast Dynamic Response and Low-Inductor Current Ripple," in IET Power Electronics, vol. 6, no. 8, pp. 1544-1554, Sep. 2013.
    [26] F. Zhang and J. P. Xu, “A Novel PCCM Boost PFC Converter with Fast Dynamic Response,” IEEE Trans. on Ind. Electron., vol. 58, no. 9, pp. 4207-4216, Sep. 2011.
    [27] F. Zhang, J. P. Xu, P. Yang, and Z. Chen, “Single-Phase Two-Switch PCCM Buck–Boost PFC Converter with Fast Dynamic Response for Universal Input Voltage,” in Proc. IEEE ICPE & ECCE’11, pp. 205–209, May 2011.
    [28] C. Zhang, Z. Yang, and Z. Zhang, “A CMOS Hysteresis Undervoltage Lockout with Current Source Inverter Structure,” IEEE 9th International Conference on ASIC, pp. 918-921, 2011.
    [29] N. K. Hoang, Y. J. Woo, and S. G. Lee, “A Zero Current Detector with Low Reverse Current by Forcing Freewheel Switch Operation in Buck Converter,” IEEE 5th ICCE’14, pp. 318-322, 2014.
    [30] C. L. Chen, W.J. Lai, T. H. Liu, and K. H. Chen, “Zero Current Detection Technique for Fast Transient Response in Buck DC-DC Converters,” in Proc. IEEE Symp. Circuits and Systems (ISCAS), pp. 2214-2217, May. 2008.
    [31] M. H. Cho, W. H. Lee, J. S. Kim, Y. H. Sa, H. S. Kim, and H. W. Cha, “Development of Undervoltage Lockout (UVLO) Circuit Configurated Schmitt Trigger,” International SoC Design Conference, pp. 59-60, 2015.
    [32] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
    [33] T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons. Inc., 2013.

    下載圖示 校內:2022-08-25公開
    校外:2022-08-25公開
    QR CODE