| 研究生: |
葉博文 Yeh, Po-wen |
|---|---|
| 論文名稱: |
氧化鋅摻雜鎂薄膜之光學特性與在拉福波感測器之應用 The Optical Characteristics of ZnO:Mg Thin Films and Their Applications on Love-Wave Acoustic Sensors |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 氧化鋅 、鎂 、拉福波 、光特性 |
| 外文關鍵詞: | optical characteristics, ZnO, Mg, Love wave |
| 相關次數: | 點閱:100 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以射頻磁控濺鍍法,研究在石英 ( Fused Quartz )與鈮酸鋰 (64°YX LiNbO3 )基板上成長C軸(002)軸向的氧化鋅:鎂( MZO )薄膜。我們設計不同的製程參數:控制氬氣與氧氣的比例、腔體內壓力、濺鍍功率、濺鍍時間、靶材成分、改變基板溫度及退火處理溫度,分別在兩種基板上成長出具有(002)軸向的氧化鋅薄膜,利用X光繞射儀 ( XRD )、掃描式電子顯微鏡 ( SEM )、原子力顯微鏡(AFM)、紫外光-可見光光譜儀、表面分析儀檢測薄膜晶體的結構、內應力、薄膜表面粗糙度、穿透度與功函數。
首先,將此薄膜應用於以64°YX LiNbO3為基板的拉福波 ( Love wave ) 感測器上。在此種基板上成長不同條件的MZO薄膜,研究其對元件頻率響應、靈敏度和溫度頻率係數的影響。厚度方面︰最大靈敏度發生在厚度與波長比值t / λ=0.041(膜厚1.67 μm,中心頻率108.6 MHz)時。第二部份,拉福波感測器則在基板不加溫時有比加溫基板提供更好之靈敏度,其靈敏度為3.86× 10-8 m2s kg-1,表面粗糙度為7.42nm。摻雜不同鎂含量方面:在鎂摻雜3%時,有使靈敏度最佳之粗糙度7.42nm。而對於溫度頻率係數而言,此基板由於與薄膜皆為負溫度係數,故沒有明顯改善效果
第三部份將沈積薄膜在Fused Quartz基板,探討其光學特性,包含穿透度、能隙、功函數與折射率之影響。根據實驗結果,薄膜沉積在不加溫基板有較佳的光學穿透度。除此之外能隙與功函數隨溫度上升略微下降;MZO薄膜在基板溫度250℃有最高之穿透度。我們發現薄膜之光學穿透度則隨退火溫度上升而下降,然而,能隙與功函數無明顯變化,而折射率隨退火溫度上生而增加。最後,穿透度對於不同鎂摻雜比例並無明顯影響,能隙與功函數隨鎂摻雜量上升而增加,折射率則隨鎂摻雜量上升而下降。
Poly-crystal ZnO:Mg ( MZO ) films with c-axis ( 002 ) orientation have been successfully grown on the Fused quartz and 64° YX-LiNbO3 substrate by RF magnetron sputtering technique. We try to deposit c-axis ( 002 ) orientation ZnO film on the two substrates. The deposited films were characterized as a function of argon-oxygen gas flow ratio, chamber pressure, RF power, deposited time, target component, substrate temperature, and annealing temperature. Crystalline structures, stress, surface roughness, transmittance and work function characteristics of the films were investigated by X-ray diffraction ( XRD ), scanning electron microscopy ( SEM ), atomic force microscopy ( AFM ) measurement, UV-visible spectrometer and Photo-electron spectrometer in air Modol (AC-2).
Firstly, we deposited the films on the LiNbO3 substrate ( MZO / IDTs / LiNbO3 ) as a Love wave sensor. With different conditions of MZO thin film, the frequency response, the sensitivity, and the temperature coefficient of frequency are measured. As a function of layer thickness., the maximum sensitivity is obtained under the ratio of thickness to wave length t/λ of 0.041 (1.67 um film thickness with the center frequency of 108.6 MHz). Secondly, the Love wave sensor provides higher sensitivity for MZO films sputtered on unheated substrate than on heated substrate, the sensitivity is 3.86× 10-8 m2s kg-1 and the roughness 7.42nm. With the different doping ratio of Mg , the ratio of 3 mol % Mg doped ZnO films has the best sensitivity with the roughness of 7.42nm. Since the substrate and the films both have negative temperature coefficient of frequency, there are little improvements on the temperature coefficient of frequency.
Thirdly, we deposit thin film on Fused Quartz substrate and investigate its optical characteristics, including the transmittance, the band gap, the work function, and the refractive index. According to the experimental result, the films depositied on the unheated substrate show better optical transmittance. Besudes, both the band gap and the work function decrease with increasing temperature, and the maximum refractive index is obtained for the substrate temperature of 250oC. It is found that the optical transmittance of the MZO films decrease with increasing the annealing temperature, However, the band gap and the work function doesn’t change obviously, and the refractive index increases with increasing the annealing temperature. Finally, the transmittance doesn’t change obviously with the different doping ratio of Mg, the band gap and the work function increases with increasing the ratio of Mg, and the refractive index decreases with increasing the ratio of Mg.
[1] J. J. Campbell and W. R. Jones, IEEE Trans.Sonics and Ultrasonics, SU-15, (1968) 209
[2] T. C. Lim, G. W. Farnell, Journal of the Acoustical Society of America, (1968) 845
[3] J. J. Campbell and W. R. Jones, IEEE Trans. Sonics and Ultrasonics, SU-17, (1970) 71
[4] V. P. Plesskii, Yu. A. Ten, Sov. Phys. Acoust. 32(2), (1986) 121
[5] Jun Kondoh, Showko Shiokawa, Electronics and Communications in Japan, Part 2, vol. 76, No. 2, 1993
[6] Jun Kondoh, Showko Shiokawa, Electronics and Communications in Japan, Part 2, vol. 78, No. 1, 1995
[7] Showko Shiokawa, Jun Kondoh, Electronics and Communications in Japan, Part 2, vol. 79, No. 3, 1996
[8] G. Sberveglieri, Sens. Actuators, B, Chem. 23 (1995) 103.
[9] J. Hechner, T. Wro´ bel, European Frequency Time Forum, IEEE Conf. Publ., 418, (1996) 370.
[10] W.P. Jakubik, M.W. Urban´czyk, S. Kochowski, J. Bodzenta, Sens. Actuators, B, Chem. 82 (2002) 265.
[11] Frans C.M. Van De Pol, Ceram. Bull. 69 (1990) 1959.
[12] J. Narayan, A.K. Sharama, A. Kvit, C. Jin, J.F. Muth, O.W. Holland,Solid State Commun. 121 (2002) 9.
[13] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Appl.Phys. Lett. 72 (1998) 2466.
[14] S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H.Shen, Appl. Phys. Lett. 80 (2002) 1529
[15] N.B. Chen, H.Z. Wu, D.J. Qiu, Acta Phys. Sin. 53 (2004) 311.
[16] N.B. Chen, H.Z. Wu, D.J. Qiu, T.N. Xu, J. Chen, W.Z. Shen, J. Phys.Condens. Matter 16 (2004) 2973.
[17] I. Takeuchi, W. Yang, K.-S. Chang, M.A. Aronova, T. Venkatesan, R.D.Vispute, L.A. Bendersky, J. Appl. Phys. 94 (2003) 7336.
[18] H. L. Hartnagel, A. K. Jagadish, “Semiconducting Transparent ThinFilms”, Institute of Physics Pub., Philadelphi (1995).
[19] R. A. Swalin., “Thermodynamics of Solids”, Wiley, New York (1974).
[20] U. Lampe and J. Muller, Ceramics Bulletin, 69(12) (1990) 1959.
[21] D.C. Look, Materials Science and Engineering B80 (2001) 383.
[22] L. Bahadur, M. Hamdami, J. F. Koenig and P. Charter, Solar Energy Mater. 14 (1986) 107.
[23] S. Pizzini, N. Butta, D. Narducci and M. Palladino:J. Electrochem. Soc. 136 (1989) 1945.
[24] R. A. Laudise, E. D. Kolb and A. J. Caporaso, J. Am. Ceram. Soc. 47 (1964) 9.
[25] E. D. Kolb and R. A. Laudise:J. Am. Ceram. Soc. 49 (1966) 302.
[26] T. Minami, H. Nanto and S. tanaka:Jpn. J. Appl. Phys. 23 (1984) L280.
[27] Z. C. Jin, I. Hamberg and C. G. Granqvist:J. Appl. Phys. 64 (1988) 5117.
[28] Z. Y. Ning, S. H. Cheng, S. B. Ge, Y. Chao, Z. Q. Gang, Y. X. Zhang and Z. G. Liu, Thin Solid Films 307 (1997) 50.
[29] S. K. Kamilla and S. Basu:Bull. Mater. Sci. 25(2002) 541.
[30] K. Ueda, H. Tabata and T. Kawai:Appl. Phys. Lett. 79(2001) 988.
[31] G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa and K. Sato:Jpn. J. Appl. Phys. 39(2000) L949.
[32] T. Dietl, H. Ohno, F.Matsukura, J. Cibert and D. Ferrand:Science 287(2000)1019.
[33] K. Sato and H. K. Yoshida:Jpn. J. Appl. Phys. 39(2000) L555.
[34] T. Fukumura, Z. Jin and M. Kawasaki, Appl. Phys. Lett. 78(2001)958.
[35] Z. Jin, T. Fukumura and M. Kawasaki, Appl. Phys. Lett. 78(2001)3824.
[36] P. Bhattacharya, R.R. Das, R.S. Katiyar, Appl. Phys. Lett. 83 (2003) 2010.
[37] W.I. Park, G.-C. Yi, H.M. Jang, Appl. Phys. Lett. 79 (2001) 2022.
[38] H.D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura,H. Koinuma, J. Appl. Phys. 91 (2002) 1993.
[39] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinumpa H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y , Appl. Phys. Lett. 72 (1998) 2466
[40] Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T and Shen H, Appl. Phys. Lett. 80 (2002) 1529
[41] Narayan J, Sharma A K, Kvit A, Jin C, Muth J F and Holland O W, Solid State Commun. 121 (2002) 9
[42] Yang Y, Hullavard S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T, Vispute R D and Shen H, Appl.Phys. Lett. 82 (2003) 3424
[43] Park W I, Yi G-C and Jang H M, Appl. Phys. Lett. 79 (2001) 2022
[44] Minemoto T, Negami T, Nishiwaki S, Takakura H and Hamakawa Y, Thin Solid Films 372 (2000) 173
[45] Chen N B, Wu H Z and Xu T N, J. Appl. Phys. 97 (2005) 023515
[46] Terasako T, Shirakata S and Kariya T, Thin Solid Films 420/421 (2002) 13
[47] C.W. Teng, J.F. Muth, U. Ozgur, M.J. Bergmann, H.O. Everitt, A.K.Sharma, C. Jin, J. Narayan, Appl. Phys. Lett. 76 (2000) 979.
[48] A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M.Kolbas, O.W. Holland, Appl. Phys. Lett. 75 (1999) 3327.
[49] N.B. Chen, H.Z. Wu, T.N. Xu, J. Appl. Phys. 97 (2005) 023515.
[50] R. Schmidt, B. Rheinlander, M. Schubert, D. Spemann, T. Butz, J.Lenzner, E.M. Kaidashev, M. Lorenz, A. Rahm, H.C. Semmelhack, M.Grundmann, Appl. Phys. Lett. 82 (2003) 2260.
[51] J. Liang, H.Z. Wu, Y.F. Lao, D.J. Qiu, N.B. Chen, T.N. Xu, Chin. Phys.Lett. 21 (2004) 1135.
[52] P. Yu, H.Z. Wu, N.B. Chen, T.N. Xu, Opt. Mater. (2005), in press.
[53] P. Yu, H.Z. Wu, N.B. Chen, T.N. Xu, J. Liang, D.J. Sun, W.Q. Guo,Chin. J. Mater. Res. 19 (2005) 277.
[54] F. V. D. Pol, Ceramic Bulletin, 69(12) (1990) 1959
[55] J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, Microsensors, MEMS, and Smart Devices, Wiley, (2001) 303
[56] J. D. Ye, S. Gu, S. Zhu, T. Chen, W. Liu, F. Qin, L. Hu, R. Zhang, Y. Shi, and Y. Zheng, J. Vac. Sci. Technol. A 21(4), (2003)
[57] Y. Natsume, H. SakataU , Thin Solid Films 372 (2000) 30
[58] X.S.Wang, Z.C.Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77 (2003) 561
[59] F. Herrmann, M. Weihnacht and S. Büttgenbach, Ultrasonics 37, (1999) 335
[60] F. Herrmann, M. Weihnacht and S. Büttgenbach, IEEE Trans. Ultrasonics Freq. Control, UFFC-48 (2001) 268
[61] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, IEEE Trans. on Microwave Theory and Techniques, 17 (1969) 856
[62] F. Herrmann, M. Weihnacht and S. Büttgenbach, Ultrasonics 37, (1999) 335
[63] C. C. Tseng, J. Appl. Phys. 38 (11) (1967) 4281
[64] R. O. Ndong, G. Ferblantier, M. Al. Kalfioui, A. Foucaran, J. Cryst. Growth, 255 (2003) 130
[65] I. T. Tang, Y. C. Wang, W. C. Hwang, C. C. Hwang, N. C. Wu, M. P. Huang, Y. H. Wang, J. Cryst. Growth, 252 (2003) 190
[66] Ren-Chuan Chang, Sheng-Yuan Chu , Cheng-Shong Hong, Yu-Ting Chuang Surface & Coatings Technology 200 (2006) 3235
[67] J. D. Ye, S. Gu, S. Zhu, T. Chen, W. Liu, F. Qin, L. Hu, R. Zhang, Y. Shi, and Y. Zheng, J. Vac. Sci. Technol. A 21(4) (2003)
[68] Deuk-Kyu Hwang, Min-Chang Jeong, Jae-Min Myoung, Applied Surface Science 225 (2004) 217
[69] Xijian Zhang, Honglei Ma, Qingpu Wang, Jin Ma, Fujian Zong, Hongdi Xiao, FengJi , Shanjia Houb, Physica B 364 (2005) 157
[70] D. A. Powell, K. Z. Kourosh, S. Ippolito and W. Wlodarski, IEEE Ultrasonics Symposium, (2002) 493
[71] K. K. Zadeh, A. Trinchi, W. Wlodarski, A. Holland, Sensors and Actuators Physics A, 100 (2002) 135
[72] O.Yamazaki, T. Mitsuyu and K.Wasa, IEEE Transactions on Sonics and Ultrasonics SU-27, (1980) 369
[73] Walter Water, Yin-shiang Yang, Sensor and Actuators A 127 (2006) 360
[74] Michael Urbakh, Leonid Daikhin, Langmuir 10 (1994) 2836
[75] Leonid Daikhin, Michael Urbakh, Langmuir 12 (1996) 6354
[76] V. Gupta and A. Mansingh, J. Appl. Phys. 80 (2) (1996) 1063
[77] Minemoto T, Negami T, Nishiwaki S, Takakura H and Hamakawa Y, Thin Solid Films 372 (2000) 173
[78] Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M and Holland O W, Appl. Phys.Lett. 75 (1999) 3327
[79] Sanjeev Kumar1, VinayGupte and K Sreenivas, J. Phys. Condens. Matter 18 (2006) 3343
[80] Takashi Minemoto, Takayuki Negami, Shiro Nishiwaki, Hideyuki Takakura, Yoshihiro Hamakawa, Thin Solid Films 372 (2000) 173
[81] L. A. Meng, M. Andritschky, and M. P. D. Santos, Vacuum 44 (1993) 105
[82] Vinay Gupta and Abhai Mansingh, J. Appl. Phys. 80 (2) (1996) 15
[83] R. Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani, A. Foucaran, Materials Science and Engineering B97 (2003) 68
[84] Akira ONODERA, Norihiko TAMAKI, Kazuo JIN and Haruyasu YAMASHITA, JPN. J. Appl. Phys. 36 (1997) 6008
[85] M. Ylilammi, J. Ella, M. Partanen and J. Kaitila, IEEE Trans Ultrason Ferroelectr Freq Control, 49(4) (2002) 535
[86] M. Kadota and T. Kitamura, IEEE Trans Ultrason Ferroelectr Freq Control, 46( 4) (1999) 817
[87] P. Wu, N. W. Emanetoqlu, X. Tonq and Y. Lu, Proceedings of the IEEE Ultrasonics Symposium, 1 (2001) 211
[88] S. H. Kim, J. S. Lee, H. C. Choi and Y. H. Lee, IEEE Electron Device Letters, 20(3) (1999) 113
[89] K. Nakamura, H. Hitazume and Y. Kawamura, Proceedings of the IEEE Ultrasonics Symposium, 1 (1999) 637
[90] J. E. Lefebvre, T. Gryba and V. Y. Zhanq, Proceedings of the IEEE Ultrasonics Symposium, 1 (2001) 261
[91] S. H. Seo, W. C. Shin and J. S. Park, Thin Solid Films, 416(1-2) (2002) 190
[92] N. W. Emsmetoqlu, G. Patounakis, S. Lianq, C. R. Gorla, R. Wittstruck and Y. Lu, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,48(5) (2001) 1389
[93] M. H. Lee, S. M. Chanq, C. K. Park, J. B. Lee and J. S. Park, Proceedings of the Annual IEEE International Frequency Control Symposium, (2002) 70
[94] S. H. Kim, J. S. Lee, H. C. Choi andY.H. Lee, IEEE Electron Device Letters, 20(3) (1999) 113
[95] V. Gupta and A. Mansingh, J. Appl. Phys. 80 (2) (1996) 1063
[96] John A. Thornton and D. W. Hoffman, Thin Solid Films, 171 (1989) 5
[97] 許正源,工業材料119期,(1996) 79-87