簡易檢索 / 詳目顯示

研究生: 劉逸弘
Liu, Yi-Hung
論文名稱: 以硫氰酸亞銅作為電洞傳輸層的高開關比自供電P-I-N鈣鈦礦光電檢測器之製備、材料分析與機制探討
The fabrication of high on-off ratio self-powered P-I-N perovskite photodetectors using cuprous thiocyanate as hole transport layer, material analysis and mechanism discussion
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 75
中文關鍵詞: 鈣鈦礦薄膜硫氰酸亞銅薄膜氧化鋅奈米柱XRD自供電紫外光感測器元件
外文關鍵詞: perovskite film, cuprous thiocyanate film, zinc oxide nanopillars, XRD, self-powered UV light sensor element
相關次數: 點閱:63下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以二步法製備鈣鈦礦薄膜,在第二步浸泡CsBr中,以不同浸泡次數志製備出的薄膜應用於光感測器上,利用鈣鈦礦本徵半導體,以及搭配P型與N型材料會形成P-I-N結構的特性達元件效率優化。由於是利用P-I-N製作的鈣鈦礦光感測器,通常比普通的二極體擁有更寬的空乏層,更大的接面電阻和更小的接面電容,致使有著自供電的性能以及良好的效率;此外,CuSCN作為P-I-N型的鈣鈦礦光感測器P型材料研究較少,穩定性佳,且其能隙位於3.6-3.9eV能使紫外光有效吸收。本研究以UV-vis、XRD、SEM、AFM及UPS來探討鈣鈦礦與CuSCN的材料機制,採取以不同浸泡次數製備鈣鈦礦薄膜,發現隨著浸泡次數的增加,在1~4次浸泡次數下,薄膜都有位於15.30°、21.73°、30.64°和37.76°的峰, 分別對應CsPbBr3鈣鈦礦的(100)、(110)、(200)和(211)晶面(PDF#54-0752). 浸泡次數較少時,薄膜的11.83°的特徵峰更為明顯,對應CsPb2Br5的(002)晶面(PDF#25-0211)。在溶液法製備CsPbBr3的過程中,CsPb2Br5總是存在,隨著浸泡CsBr的次數不斷增加,CsPb2Br5逐漸向CsPbBr3轉化,XRD結果中CsPbBr3位於15.30°、 21.73°、30.64°的特徵峰增強,在4次浸泡後Cs4PbBr6在13.05°的相出現。能帶的部分,在浸泡3次時鈣鈦礦I層的能帶最能符合P層的CuSCN與N層的ZnO,並擁有最高的吸收峰。在SEM表面的部分,隨著浸泡的次數增加,鈣鈦礦的晶粒越來越大,且排列緊密,在浸泡4次後,過度的反應及退火開始讓晶界消融。
    在CuSCN的部分,目前常用於旋塗的CuSCN溶劑是二乙硫醚(DES),DES是一種極溶劑,會對鈣鈦礦薄膜造成侵蝕,本實驗採用了幾種不同的去除DES的方式並對其做AFM與接觸角的分析,可以發現使用低壓(LPT)處理的薄膜,因為能更快更有效的除去DES,降低DES對鈣鈦礦層的侵蝕,所以得到的粗糙度較低,而接觸角的部分,不管是用何種方式處理的CuSCN薄膜,都有著大的接觸角(>90o),代表CuSCN是一個很好的疏水性材料,可以幫助容易水解的鈣鈦礦元件提升效率。
    於元件端本研究目的是藉由改變鈣鈦礦薄膜的浸泡次數,以及不同的去除DES方式製備CuSCN薄膜來提升元件效率,元件的響應時間皆小於1秒,在響應度部分,可由原本10mA/W提升至13mA/W提升了1.3倍,有效提升元件表現。經過LPT處理後的CuSCN,因為更有效且快速的除去了DES,降低其對鈣鈦礦薄膜的侵蝕,在暗電流上有著顯著的降低,最低可達到1.28x10-12(A),極低的暗電流使得開關比也提升到了4.2×106,極高的開關比可以有效提升元件在應用上的潛力。

    In this study, we optimized perovskite and CuSCN films using different soaking times and ways of removing DES, respectively. When we changed the soaking times, we found that the crystal phase of the perovskite gradually changed from CsPb2Br5 to CsPbBr3 when we increased the soaking times. In order to meet the requirements of high-performance photosensors in polycrystalline films, larger crystal grains need to be formed and the crystal phase needs to be more consistent. Poor crystallinity and too much CsPb2Br5 will lead to smaller crystal grains. Then, we discuss the effect of different DES removal methods on the properties of CuSCN thin films. The LPT treatment method has a higher photocurrent than the annealing, and the 60-minute treatment has a higher photocurrent than the 30-minute treatment. The reason is that the LPT can remove the DES more effectively than the annealing and reduce its erosion to the perovskite, and the treatment is longer. time to remove DES more completely. In this study, we found that the device had the highest responsivity when the number of immersion was 3 and CuSCN was treated with LPT for 60 min. This is because the reaction of perovskite is more complete, with larger grains and consistent crystallographic orientation, and LPT can better remove DES and reduce the erosion of perovskite.
    Keywords : perovskite film, cuprous thiocyanate film, zinc oxide nanopillars, XRD, self-powered UV light sensor element

    摘要 i 致謝 x 目錄 xi 表目錄 xiii 圖目錄 xiv 第一章 緒論 1 1-1 前言 1 1-2 鈣鈦礦光感測器簡介 1 1-3 論文架構 5 第二章 理論介紹與文獻回顧 6 2-1 光檢測器簡介 6 2-2 氧化鋅材料簡介 8 2-3 鈣鈦礦材料簡介 9 2-4 硫氰酸亞銅材料簡介 11 2-5 水熱法 12 2-5-1 水熱法簡介 12 2-5-2 水熱法製備氧化鋅歷史回顧 12 2-6 旋塗法 17 2-6-1 旋塗法簡介 17 2-6-2 鈣鈦礦薄膜歷史回顧 17 2-6-3 硫氰酸亞銅薄膜歷史回顧 22 第三章 實驗步驟與儀器原理 26 3-1 前言 26 3-2 實驗用材料 27 3-3 實驗步驟-氧化鋅紫外光感測元件製備 30 3-3-1 ITO基板前處理步驟 30 3-3-2 ZnO Seed Layer製備步驟 31 3-3-3 ZnO Nana Structure 水熱法製備步驟 33 3-3-4 鈣鈦礦薄膜兩步法製備步驟 36 3-3-3 硫氰酸亞銅薄膜製備步驟 36 3-3-4 金屬電極之蒸鍍製程 37 3-4 量測系統及特性分析 38 3-4-1 量測儀器設備 38 3-4-2 特性分析 39 第四章 實驗數據與結果討論 44 4-1 CsPbBr3經不同浸泡次數改變特性分析與機制探討 44 4-1-1 CsPbBr3經不同浸泡次數改變XRD分析 44 4-1-2 CsPbBr3經不同浸泡次數能帶圖分析 46 4-1-3 CsPbBr3經不同浸泡次數PL分析 47 4-1-4 CsPbBr3經不同浸泡次數AFM表面粗糙度分析 48 4-1-5 CsPbBr3經不同浸泡次數之SEM分析 51 4-2 CuSCN經不同去除DES方式改變特性分析與機制探討 52 4-2-1 CuSCN經不同去除DES方式AFM表面粗糙度分析 52 4-2-2 CuSCN經不同去除DES方式接觸角分析 54 4-3 鈣鈦礦紫外光感測器元件機制探討 55 4-3-1 不同浸泡次數製備鈣鈦礦薄膜之元件It圖分析 55 4-3-2 不同去除DES方式製備CuSCN之元件It圖分析 59 4-3-3 自供電鈣鈦礦光感測器效率比較 62 第五章 結論與未來展望 63 5-1 結論 63 5-2 未來展望 67 第六章 參考文獻 68

    [1] Look, David C. "Recent advances in ZnO materials and devices." Materials science and engineering: B 80.1-3 (2001): 383-387.
    [2] Pearton, S. J., et al. "Recent advances in processing of ZnO." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22.3 (2004): 932-948.
    [3] Gruber, Th, et al. "ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region." Applied physics letters 84.26 (2004): 5359-5361.
    [4] Li, Haixia, et al. "High-level-Fe-doped P-type ZnO nanowire array/n-GaN film for ultraviolet-free white light-emitting diodes." Materials Letters 239 (2019): 45-47.
    [5] Kim, J. B., et al. "Cu-doped ZnO-based p–n hetero-junction light emitting diode." Semiconductor science and technology 23.9 (2008): 095004.
    [6] Dai, Wen, et al. "ZnO homojunction UV photodetector based on solution-grown Sb-doped p-type ZnO nanorods and pure n-type ZnO nanorods." RSC advances 5.9 (2015): 6311-6314.
    [7] Nomoto, Junichi, et al. "Chemical trends of n-type doping of Al, Ga, In, and Ti donors for ZnO polycrystalline films deposited by direct-current magnetron sputtering." Journal of Applied Physics 128.14 (2020): 145303.
    [8] Wagner, A. RS, and S. WC Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied physics letters 4.5 (1964): 89-90.
    [9] Wu, Yiying, and Peidong Yang. "Direct observation of vapor− liquid− solid nanowire growth." Journal of the American Chemical Society 123.13 (2001): 3165-3166.
    [10] Lin, Bixia, Zhuxi Fu, and Yunbo Jia. "Green luminescent center in undoped zinc oxide films deposited on silicon substrates." Applied physics letters 79.7 (2001): 943-945.
    [11] Shi, Enzheng, et al. "Two-dimensional halide perovskite nanomaterials and heterostructures." Chemical Society Reviews 47.16 (2018): 6046-6072.
    [12] Ma, Haijiao Harsan, et al. "Growth of metal halide perovskite, from nanocrystal to micron-scale crystal: A review." Crystals 8.5 (2018): 182.
    [13] Gao, Peng, Michael Grätzel, and Mohammad K. Nazeeruddin. "Organohalide lead perovskites for photovoltaic applications." Energy & Environmental Science 7.8 (2014): 2448-2463.
    [14] Pattanasattayavong, Pichaya, Daniel M. Packwood, and David J. Harding. "Structural versatility and electronic structures of copper (i) thiocyanate (CuSCN)–ligand complexes." Journal of Materials Chemistry C 7.41 (2019): 12907-12917.
    [15] Vayssieres, Lionel, et al. "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO." The Journal of Physical Chemistry B 105.17 (2001): 3350-3352.
    [16] Vayssieres, Lionel, et al. "Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron (III) oxides." Chemistry of materials 13.2 (2001): 233-235.
    [17] Baruah, Sunandan, and Joydeep Dutta. "Hydrothermal growth of ZnO nanostructures." Science and technology of advanced materials (2009).
    [18] Ashfold, Michael NR, et al. "The kinetics of the hydrothermal growth of ZnO nanostructures." Thin Solid Films 515.24 (2007): 8679-8683.
    [19] Govender, Kuveshni, et al. "Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution." Journal of Materials Chemistry 14.16 (2004): 2575-2591.
    [20] Sugunan, Abhilash, et al. "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine." Journal of Sol-Gel Science and Technology 39.1 (2006): 49-56.
    [21] Zhang, Zhiqing, and Jin Mu. "Hydrothermal synthesis of ZnO nanobundles controlled by PEO–PPO–PEO block copolymers." Journal of colloid and interface science 307.1 (2007): 79-82.
    [22] Wang, Zhuo, et al. "Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency." Journal of Solid State Chemistry 177.6 (2004): 2144-2149.
    [23] Wahab, Rizwan, et al. "Low temperature solution synthesis and characterization of ZnO nano-flowers." Materials Research Bulletin 42.9 (2007): 1640-1648.
    [24] Scriven, L. E. "Physics and applications of dip coating and spin coating." MRS Online Proceedings Library (OPL) 121 (1988).
    [25] Emslie, Alfred G., Francis T. Bonner, and Leslie G. Peck. "Flow of a viscous liquid on a rotating disk." Journal of Applied Physics 29.5 (1958): 858-862.
    [26] Wilson, S. K., R. Hunt, and B. R. Duffy. "The rate of spreading in spin coating." Journal of Fluid Mechanics 413 (2000): 65-88.
    [27] Danglad-Flores, José, Stephan Eickelmann, and Hans Riegler. "Deposition of polymer films by spin casting: A quantitative analysis." Chemical Engineering Science 179 (2018): 257-264.
    [28] Kumar, Mulmudi Hemant, et al. "Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells." Chemical Communications 49.94 (2013): 11089-11091.
    [29] Liu, Xingyue, et al. "Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr 3 perovskites for applications in optical communication." Journal of Materials Chemistry C 8.10 (2020): 3337-3350.
    [30] Wang, Qi, et al. "Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process." Energy & Environmental Science 7.7 (2014): 2359-2365.
    [31] Zhou, Huanping, et al. "Interface engineering of highly efficient perovskite solar cells." Science 345.6196 (2014): 542-546.
    [32] Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. "Efficient planar heterojunction perovskite solar cells by vapour deposition." Nature 501.7467 (2013): 395-398.
    [33] Liu, Dianyi, and Timothy L. Kelly. "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques." Nature photonics 8.2 (2014): 133-138.
    [34] Chen, Qi, et al. "Planar heterojunction perovskite solar cells via vapor-assisted solution process." Journal of the American Chemical Society 136.2 (2014): 622-625.
    [35] Kim, Hui-Seon, et al. "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%." Scientific reports 2.1 (2012): 1-7.
    [36] Lee, Michael M., et al. "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites." Science 338.6107 (2012): 643-647.
    [37] Zhou, Huanping, et al. "Interface engineering of highly efficient perovskite solar cells." Science 345.6196 (2014): 542-546.
    [38] Conings, Bert, et al. "Perovskite‐based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach." Advanced Materials 26.13 (2014): 2041-2046.
    [39] Kim, Hak-Beom, et al. "Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells." Nanoscale 6.12 (2014): 6679-6683.
    [40] Jeon, Nam Joong, et al. "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells." Nature materials 13.9 (2014): 897-903.
    [41] Seo, Jangwon, et al. "Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells." Energy & Environmental Science 7.8 (2014): 2642-2646.
    [42] Xiao, Manda, et al. "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells." Angewandte Chemie International Edition 53.37 (2014): 9898-9903.
    [43] Chaudhary, Neeraj, et al. "An eco-friendly and inexpensive solvent for solution processable CuSCN as a hole transporting layer in organic solar cells." Optical Materials 69 (2017): 367-371.
    [44] Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide
    [45] Chaudhary, Neeraj, et al. "An eco-friendly and inexpensive solvent for solution processable CuSCN as a hole transporting layer in organic solar cells." Optical Materials 69 (2017): 367-371.
    [46] Yaacobi‐Gross, Nir, et al. "High‐Efficiency Organic Photovoltaic Cells Based on the Solution‐Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT: PSS." Advanced Energy Materials 5.3 (2015): 1401529.
    [47] Ogawa, Yuta, et al. "Substrate‐oriented nanorod scaffolds in polymer–fullerene bulk heterojunction solar cells." ChemPhysChem 15.6 (2014): 1070-1075.
    [48] Yang, Zhi, et al. "Semi-transparent ZnO-CuI/CuSCN photodiode detector with narrow-band UV photoresponse." ACS Applied Materials & Interfaces 7.38 (2015): 21235-21244.
    [49] Worakajit, Pimpisut, et al. "Elucidating the Coordination of Diethyl Sulfide Molecules in Copper (I) Thiocyanate (CuSCN) Thin Films and Improving Hole Transport by Antisolvent Treatment." Advanced Functional Materials 30.36 (2020): 2002355.
    [50] Kim, Gisung, et al. "Methylammonium Compensation Effects in MAPbI3 Perovskite Solar Cells for High-Quality Inorganic CuSCN Hole Transport Layers." ACS Applied Materials & Interfaces 14.4 (2022): 5203-5210.
    [51] Liu, Nanjing, et al. "Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells." Journal of Power Sources 499 (2021): 229970.
    [52] Liu, Nanjing, et al. "Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells." Journal of Power Sources 499 (2021): 229970.
    [53] Xue, Mengni, et al. "Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure." Solar Energy Materials and Solar Cells 187 (2018): 69-75.
    [54] Li, Ying, et al. "High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr 3 thin films." Journal of Materials Chemistry C 5.33 (2017): 8355-8360.
    [55] Li, Cunlong, et al. "Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films." Solar Energy Materials and Solar Cells 172 (2017): 341-346.

    下載圖示 校內:2023-09-26公開
    校外:2023-09-26公開
    QR CODE