簡易檢索 / 詳目顯示

研究生: 晉琪祥
Chin, Chi-Hsiung
論文名稱: 應用於多輸入多輸出正交分頻多工系統之改良式期望值最大化通道估測演算法
Modified EM-Based Channel Estimation Algorithms for MIMO-OFDM Systems
指導教授: 謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 66
中文關鍵詞: 多輸入多輸出正交分頻多工通道估測期望值最大化
外文關鍵詞: MIMO, OFDM, Channel Estimation, EM
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要探討在多輸入多輸出正交分頻多工系統下之期望值最大化通道估測演算法。本論文主要分為二部分,在第一個部分為,我們假設演算法中所使用的通道脈衝響應之長度大於實際通道長度,因此原始期望值最大化通道估測的結果會含有多餘的雜訊而無法消除;為降低多餘雜訊的影響,提出在期望值最大化通道估測演算法中加入雜訊消除方法以增進效能。另外,當可利用的領航訊號數目增加時,通道估測之效能亦會隨之增加;所以在論文第二部分中,我們提出二維期望值最大化通道估測演算法,並分別考慮靜態通道與時變通道下討論演算法之效能。最後模擬結果顯示,期望值最大化通道估測加入雜訊消除方法後對於通道長度的精確度之效應較不敏感;二維期望值最大化通道估測不論在靜態通道或時變通道下皆能有效提升效能。

    In this thesis, expectation-maximization (EM) channel estimation algorithms for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems are investigated. This work can be mainly divided into two parts. In the first part, the condition that the channel length used in algorithms is greater than the real channel length is assumed and thus channel impulse response (CIR) estimated by the original EM algorithms may contain extra noise components which cannot be completely eliminated. To mitigate the effects of these noise components, a noise reduction method is proposed to increase the performance. Moreover, since the performance can be increased when more useful pilot symbols are applied, a two-dimension EM channel estimation method is proposed in the second part of this thesis. Simulation results show that the EM channel estimation with the proposed noise reduction method is insensitive to the effects of inaccurate channel length. Additionally, the proposed two-dimension EM channel estimation method also has better performance under static or time-varying channel environments.

    摘 要 i ABSTRACT ii 誌 謝 iii 目 錄 iv 表 目 錄 vii 圖 目 錄 viii 第一章 緒論 1 1.1背景介紹 1 1.2 研究動機 2 第二章 多輸入多輸出正交分頻多工系統之通道估測 4 2.1多輸入多輸出正交分頻多工系統 4 2.1.1正交分頻多工系統介紹 4 2.1.1.1正交分頻多工系統之實現 5 2.1.1.2 正交分頻多工系統架構 6 2.1.2多輸入多輸出系統架構 8 2.1.3多輸入多輸出架構與正交分頻多工系統模型 8 2.2 通道估測 9 2.2.1領航訊號輔助通道估測 10 2.2.2正交分頻多工系統中通道估測方法 11 2.2.2.1最小平方誤差估測 11 2.2.2.2線性最小均方誤差估測 12 2.2.2.3離散傅立葉轉換通道估測 12 2.2.2.4時變通道下通道估測 15 2.3.3多輸入多輸出正交分頻多工系統中通道估測方法 16 2.2.3.1最小平方誤差估測 17 2.2.3.2期望值最大化通道估測 19 2.2.3.3最大事後機率期望值最大化通道估測 21 2.2.3.4期望值最大化通道估測計算複雜度 22 第三章 改良式期望值最大化通道估測演算法 23 3.1期望值最大化通道估測加入雜訊消除方法 23 3.1.1通道長度未知下期望值最大化通道估測 23 3.1.2雜訊消除方法 25 3.1.2.1使用內插濾波器消除雜訊 25 3.1.2.2期望值最大化通道估測結合線性內插濾波器 26 3.1.2.3混合式期望值最大化通道估測 27 3.2提出之二維期望值最大化通道估測 29 3.2.1資料決策迴授方法 29 3.2.2二維期望值最大化通道估測 30 3.2.2.1靜態通道下之通道估測 30 3.2.2.2時變通道下之通道估測 31 3.2.2.3時變通道下之直線擬合修正 34 第四章 模擬與比較 35 4.1模擬環境與參數 35 4.1.1通道模型 36 4.2期望值最大化通道估測加入雜訊消除方法 36 4.2.1不同領航訊號數目下EM通道估測之效能評估 37 4.2.2離散傅立葉通道估測加入雜訊消除方法之效能評估 40 4.2.3不同遞迴次數下之效能評估 43 4.2.3不同通道長度下之效能評估 48 4.2.3.1 在16QAM調變方式下之效能 52 4.3提出之二維期望值最大化通道估測 54 4.3.1靜態通道下之效能評估 54 4.3.2時變通道下之效能評估 56 4.3.2.1時變通道下資料決策回授之效能評估 58 4.3.2.2不同領航訊號擺放方式 60 第五章 結論與未來展望 63 參考文獻 64

    [1] G. J. Foschini and M. J. Gans, “On limits of wireless communication in a fading environment when using multiple antennas,” Wireless Personal Commun. , vol. 6, pp. 311-335, Mar. 1998.
    [2] H. Bolckei, D. Gesbert and A. J. Paulraj, “On the capacity of OFDM-based spatial multiplexing systems,” IEEE Trans. Commun., vol. 50, pp. 225-234, Feb. 2002.
    [3] S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
    [4] J.-J van de Beek, O. Edfors, M. Sandell, S.K. Wilson and P.O. Borjesson, “On channel estimation in OFDM systems,” in Proc. of IEEE Vehicular Technology Conference, vol. 2, pp. 815-819, Jul. 1995.
    [5] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. Bojesson, “OFDM channel estimation by singular value decomposition,” IEEE Trans. Commun., vol. 46, no7, pp. 931-939, Jul. 1998.
    [6] M. H. Hsieh and C. H. Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” IEEE Trans. Consumer Electron., vol. 44, no. 1, pp. 217-225, Feb. 1998.
    [7] S. Coleri, M. Ergen, A. Puri and A. Bahai, "Channel estimation techniques based on pilot arrangement in OFDM systems," IEEE Trans. Broadcast., vol.48, no.3, pp. 223- 229, Sep. 2002.
    [8] Y. Li, “Pilot-symbol-aided channel estimation for OFDM in wireless systems,” IEEE Trans. Veh. Technol., vol. 49, pp. 1207-1215, Jul. 2000.
    [9] Y. Zhao and A. Huang, “A novel channel estimation method for OFDM mobile communication systems based on pilot signals and transform-domain processing,” in Proc. of IEEE Vehicular Technology Conference, vol. 3, pp. 2089-2093, May 1997.
    [10] A. Dowler, A. Doufexi, and A. Nix, “Performance evaluation of channel estimation techniques for a mobile fourth generation wide area OFDM system,” in Proc. of IEEE Vehicular Technology Conference, vol. 4, pp. 2036-2040, Sep. 2002,.
    [11] Y. Kang, K. Kim, H. Park, “Efficient DFT-based channel estimation for OFDM systems on multipath channels,” IET Commun., vol.1, no.2, pp.197-202, Apr. 2007.
    [12] W. G. Jeon, K. H. Chang, and Y. S. Cho, “An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels,” IEEE Trans. Commun., vol. 47, pp. 27-32, Jan. 1999.
    [13] Y. Mostofi and D. C. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 765-774, Mar. 2005.
    [14] Y. Li, N. Seshadri, and L. Ariyavisitakul, “Channel estimation for OFDM systems with transmitter diversity in mobile wireless channel,” IEEE J. Select. Areas Commun., vol. 17, pp. 461-471, Mar. 1999.
    [15] Y. Li, “Simplified channel estimation for OFDM systems with multiple transmit antennas,” IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 67-75, Jan. 2002.
    [16] G. L. Stuber, J. R. Barry, S. W. McLaughlin, Y. Li, M. A. Ingram, and T. G. Pratt, “Broadband MIMO-OFDM wireless communications,” Proc. of IEEE, vol. 92, pp. 271-294, Feb. 2004.
    [17] J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-maximization algorithm,” IEEE Trans. Signal Processing, vol. 42, pp. 2664-2677, Oct. 1994.
    [18] Y. Xie and C. N. Georghiades, “Two EM-type channel estimation algorithms for OFDM with transmitter diversity,” IEEE Trans. Commun., vol. 51, no. 1, pp. 106-115, Jan. 2003.
    [19] Y. Xie and C. N. Georghiades, “An EM-based channel estimation algorithm for OFDM with transmitter diversity,” in Proc. of IEEE Globecom’01, vol. 2, San Antonio, TX, pp. 871-875, Nov. 2002.
    [20] Y. Li, “Optimum training sequences for OFDM systems with multiple transmit antennas,” in Proc. of IEEE Globecom’00, vol. 3, San Francisco, CA, pp. 1478-1482, Nov. 2000.
    [21] M. Feder and E.Weinstein, “Parameter estimation of superimposed signals using the EM algorithm,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 477-489, Apr. 1988.
    [22] J. Gao and H. Liu, “Low-complexity map channel estimation for mobile MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 7, no.3, pp. 774-780, Mar. 2008.
    [23] Gao, Jie, “Channel estimation and data detection for mobile MIMO OFDM systems,” Jan. 2006.
    [24] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall International, pp. 83-97, 1993.
    [25] P. Dent, G. E. Bottomley, and T. Croft, “Jakes fading model revisited,” Electron. Lett., vol. 29, pp. 1162-1663, Jun. 1993.

    下載圖示 校內:2011-08-30公開
    校外:2011-08-30公開
    QR CODE