簡易檢索 / 詳目顯示

研究生: 陳志遠
Chen, Chih-Yuan
論文名稱: 具有超疏水表面的聚二甲基矽氧烷可撓式電極應用於生理電位量測之研製
Implementation of Polydimethylsiloxane Flexible Electrode with Super-hydrophobic Surface for Bio-potential Measurement
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 83
中文關鍵詞: 聚二甲基矽氧烷CO2 laser聚甲基丙烯酸甲酯乾式電極
外文關鍵詞: PDMS, CO2 laser, PMMA, Dry electrode
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來生理電位量測應用於居家照護和長時間監控逐漸被討論和重視,主要目的是為了提供患者居家醫療監測以及方便照護。然而目前市面上所使用之生理電位量測感測器,大部分皆為濕電極(Ag/AgCl),其缺點在於長時間貼附於皮膚時,會造成皮膚紅腫、過敏等現象,對於皮膚較敏感的使用者,在使用時隨即感覺皮膚不適。隨著微機電技術的進步,許多學者紛紛投入微機電針狀乾式電極以及可撓式高分子材料電極開發,然而相關文獻皆指出這些電極本身尚有些許缺點存在,像是侵入式的針狀電極會造成皮膚些微疼痛,而可撓式高分子材料電極在使用上的不便以及電極薄膜容易脫落等相關問題存在。
    本文所提出創新之生理電位感測可撓式乾電極,其作法主要是使用生物相容性佳且具有彈性可撓特性的聚二甲基矽氧烷材料為電極基板,加上與皮膚接觸之電極同為生物相容性佳且具有高延展性之黃金為導電薄膜,並藉由聚甲基丙烯酸甲酯、CO2 laser和翻模成型等材料與技術完成可撓式乾電極的製作。本文應用CO2 laser技術來改善電極薄膜附著率之創新方法,有別於目前文獻皆使用氧電漿蝕刻和聚對二甲基苯沉積等技術。本文更延伸出一個全新的概念,超疏水性之表面應用於可撓式乾電極,其目的是希望電極表面有蓮葉效應之特性,具有防水的效果,降低與人體皮膚接觸時,人體表面之汗水等干擾物附著在表面進而影響電極。應用蓮葉效應結合三維結構形成創新可撓式乾電極,以提高皮膚接觸面積,降低毛髮的影響應用於生理電位量測。
    本文創新之可撓式乾電極相較於濕電極,除了比較不會造成皮膚紅腫、過敏等問題,相較於高分子材料電極,提供一個更為穩定和方便的量測方式。此外,藉由特殊的封裝方式整合可撓式乾電極,提出單點式無線生理電位量測裝置,而附著率相較於與氧電漿蝕刻能有效提升57%。具有超疏水性表面的三維結構可撓式乾電極,其水滴接觸角154˚已達到超疏水標準150˚,阻抗相較於濕電極約能降低10%。
    本文藉由3種型態之可撓式乾電極設計,結合電路進行多點和單點之生理電位測量,相信上述聚二甲基矽氧烷可撓式乾電極之優點,未來能夠對人類醫療生活的舒適度和便利性做出貢獻。

    Bio-potential measurement in homecare and during long-term monitoring has recently received widespread attention. The purpose of this technology is to enable patients with chronic diseases to receive homecare or care close to home. However, commercial bio-potential electrodes are almost wet all electrodes (Ag/AgCl), and the drawback of wet electrodes is that they can cause itchiness, reddening, and swelling of the skin during long-term use. In recent years, researchers have begun to use micro-electro-mechanical systems (MEMS) technology to fabricate micro-needle dry electrodes and polymer dry electrodes. However, the literatures reporting these electrodes have some defects. For instance, an invasive micro-needle electrode could cause skin irritation; the wire connection of the polymer dry electrode offers a weak interface attachment, and the Au could flake off slightly.
    The primary purpose of this study is to purpose an innovative flexible polydimethylsiloxane dry electrode (FPDE). The bio-compatible polydimethylsiloxane (PDMS) was made by using a polymethylmethacrylate (PMMA) material, a CO2 laser and a replica molding technique for FPDE structure building, and the novel FPDE uses bio-compatible Au as the skin contact layer, which is also made using the same technology. Furthermore, this work proposes a novel method to improve the PDMS surface roughness from nm to μm scale that increases Au adhesion strength on the PDMS surface by using a CO2 laser and a replica molding method. This method is unlike the literatures describing the use of O2 plasma etching and techniques using parylene-C. The study provides a novel FPDE concept where the super-hydrophobic effect is combined with a three-dimensional (3D) structure FPDE for bio-potential applications. The purpose of the super-hydrophobic effect is similar to that of a lotus leaf on the FPDE surface and offers good waterproofing property and reduces interference from the human body. The 3D FPDE with soft conical structures can fit the scalp surface even if it is hairy and provides low contact impedance for bio-potential application.
    This work proposed a novel FPDE that could not easily cause itchiness, reddening, and swelling of the skin during long-term use as compared with standard wet electrodes. It also provides better reliability and a more robust attachment for a measurement method as compared to flexible polymer dry electrodes. Furthermore, the FPDE was integrated and packaged with a flexible and transparent PDMS covered with a three-pad FPDE into a novel one-point, wearable, wireless ECG acquisition device. The laser treatment method can increase the adhesion ratio by up to 57% (max.). The 3D FPDE can contact the skin through hair, which reduces impedance by 10% as compared with standard wet electrodes on hairy sites, and the value of the contact angle (154˚) achieves a super-hydrophobic effect similar to that of a lotus leaf.
    This work proposed three types of FPDE design that can be integrated with bio-potential acquisition devices for single or multiple position bio-potential measurement. Importantly, the proposed FPDE can offer comfortable skin contact that improves the ease of medical care provided during homecare.

    摘要 I Abstract III 誌謝 VI Table of Contents VIII Table Captions X Fig Captions XI Chapter 1 Introduction 1 1.1 Review of Bio-potential Acquisition Devices 1 1.2 Review of Bio-potential Electrodes 3 1.3 Review of Metal Film Adhesion Strength on PDMS Material 9 1.4 Review of Hydrophobic Effect on PDMS Material 11 1.5 Motivation 14 1.6 Organization of Dissertation 18 Chapter 2 Methods 21 2.1 Design Techniques 21 2.1.1 CO2 Laser Machining and Replica Molding Method 21 2.1.2 PMMA Master Fabrication Process 22 2.2 FPDE Design 23 2.3 One-point FPDE Design 28 2.3.1 One-point FPDE Fabrication Process 28 2.3.2 Metal Film Adhesion Strength on PDMS Surface 31 2.3.3 Quantitative Determination of Adhesion Strength 33 2.3.4 Topography and Surface Characteristics 33 2.4 3D FPDE Design 34 2.4.1 3D FPDE Fabrication Process 34 2.4.2 Fabrication of PDMS Super-hydrophobic Surface 36 2.4.3 Surface Roughness and Contact Angle Measurement 37 2.5 Bio-potential Acquisition Devices for ECG Measurement by FPDE 38 2.5.1 Portable Bio-potential Acquisition Device 38 2.5.2 Wireless Bio-potential Acquisition Device 42 2.5.3 FPDE with DCT-IV based ECG Compression Algorithm Application 43 Chapter 3 Results 46 3.1 FPDE 46 3.1.1 The FPDE Package 46 3.1.2 Measuring Impedance of FPDE 47 3.1.3 Portable Bio-potential Acquisition System 50 3.2 One-point FPDE 53 3.2.1 Measuring Impedance of One-point FPDE 53 3.2.2 Adhesion Strength to the Surface Roughness 56 3.2.3 One-point Wearable Wireless ECG Acquisition Device 62 3.3 3D FPDE 65 3.3.1 Measuring Impedance of 3D FPDE 65 3.3.2 Surface Roughness and Contact Angle Measurement 67 Chapter 4 Conclusion and Discussion 72 References 76 Publications List 83

    [1] R.F. Yazicioglu, T. Torfs, P. Merken, J. Penders, V. Leonov, R. Puers, B. Gyselinckx, C. Van Hoof, Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems, Microelectronics Journal, 40 (2009) 1313-1321.
    [2] Y.M. Chi, T.P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: methodological review, Biomedical Engineering, IEEE Reviews in, 3 (2010) 106-119.
    [3] E. Nemati, M.J. Deen, T. Mondal, A wireless wearable ECG sensor for long-term applications, Communications Magazine, IEEE, 50 (2012) 36-43.
    [4] W.S. Wang, H.Y. Huang, Z.C. Wu, S.C. Chen, W.F. Wang, C.F. Wu, C.H. Luo, Wireless biopotential acquisition system for portable healthcare monitoring, Journal of medical engineering & technology, 35 (2011) 254-261.
    [5] C.T. Lin, K.C. Chang, C.L. Lin, C.C. Chiang, S.W. Lu, S.S. Chang, B.S. Lin, H.Y. Liang, R. J. Chen, Y.T. Lee, L.W. Ko, An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation, IEEE Transactions on Information Technology in Biomedicine, 14 (2010) 726-733.
    [6] Y.D. Lee, W.Y. Chung, Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring, Sensors and Actuators B: Chemical, 140 (2009) 390-395.
    [7] Y. Lee, M. Lee, Development of an integrated module using a wireless accelerometer and ECG sensor to monitor activities of daily living, Telemedicine and e-Health, 14 (2008) 580-586.
    [8] J. Jung, K. Ha, J. Lee, Y. Kim, D. Kim, Wireless body area network in a ubiquitous healthcare system for physiological signal monitoring and health consulting, International Journal of Signal Processing, Image Processing and Pattern Recognition, 1 (2008) 47-54.
    [9] C.W. Chang, J.C. Chiou, Surface-mounted dry electrode and analog-front-end systems for physiological signal measurements, IEEE/NIH International Symposium on Life Science Systems and Applications Workshop (2009) 108-111.
    [10] C.L. Chang, C.W. Chang, C.M. Hsu, C.H. Luo, J.C. Chiou, Power-efficient wireless sensor for physiological signal acquisition, Journal of Micro/Nanolithography, MEMS and MOEMS, 8 (2009) 021120.
    [11] J.C. Chiou, L.W. Ko, C.T. Lin, C.T. Hong, T.P. Jung, Using novel MEMS EEG sensors in detecting drowsiness application, IEEE Biomedical Circuits and Systems Conference, (2006) 33-36.
    [12] C. Huasong, L. Haoming, L. Stocco, V.C.M. Leung, Wireless three-pad ECG system: Challenges, design, and evaluations, Communications and Networks, Journal of, 13 (2011) 113-124.
    [13] H. Cao, H. Li, L. Stocco, V.C.M. Leung, Demonstration of a novel wireless three-pad ECG system for generating conventional 12-lead signals, in: Proceedings of the Fifth International Conference on Body Area Networks, ACM, Corfu, Greece, 2010, pp. 29-32.
    [14] J.W. Lee, K.H. Lee, Y.J. Lee, L.Y. Hong, D.J. Kim, K.S. Kim, B. Lee, M. Lee, Reusable electrical activity of the heart monitoring patch for mobile/ubiquitous healthcare, Journal of Medical Systems, 33 (2008) 41-46.
    [15] Y. Chuo, M. Marzencki, B. Hung, C. Jaggernauth, K. Tavakolian, P. Lin, B. Kaminska, Mechanically flexible wireless multisensor platform for human physical activity and vitals monitoring, Biomedical Circuits and Systems, IEEE Transactions on, 4 (2010) 281-294.
    [16] A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer, Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip, Journal of Chromatography A, 593 (1992) 253-258.
    [17] A. Searle, L. Kirkup, A direct comparison of wet, dry and insulating bioelectric recording electrodes, Physiological Measurement, 21 (2000) 271.
    [18] E. Huigen, A. Peper, C.A. Grimbergen, Investigation into the origin of the noise of surface electrodes, Medical and Biological Engineering and Computing, 40 (2002) 332-338.
    [19] M.S. Spach, R.C. Barr, J.W. Havstad, E.C. Long, Skin-electrode impedance and its effect on recording cardiac potentials, Circulation, 34 (1966) 649-656.
    [20] J.Y. Baek, J.H. An, J.M. Choi, K.S. Park, S.H. Lee, Flexible polymeric dry electrodes for the long-term monitoring of ECG, Sensors and Actuators A: Physical, 143 (2008) 423-429.
    [21] P. Salvo, R. Raedt, E. Carrette, D. Schaubroeck, J. Vanfleteren, L. Cardon, A 3D printed dry electrode for ECG/EEG recording, Sensors and Actuators A: Physical, 174 (2012) 96-102.
    [22] D.M.D. Ribeiro, L.S. Fu, L.A.D. Carlos, J.P.S. Cunha, A novel dry active biosignal electrode based on an hybrid organic-inorganic interface material, Sensors Journal, IEEE, 11 (2011) 2241-2245.
    [23] G. Gargiulo, R.A. Calvo, P. Bifulco, M. Cesarelli, C. Jin, A. Mohamed, A. van Schaik, A new EEG recording system for passive dry electrodes, Clinical Neurophysiology, 121 (2010) 686-693.
    [24] P. Griss, P. Enoksson, H.K. Tolvanen-Laakso, P. Meriläinen, S. Ollmar, G. Stemme, Micromachined electrodes for biopotential measurements physiological signal measurements, Journal of Microelectromechanical Systems, 10 (2001) 10-16.
    [25] P. Griss, P. Enoksson, G. Stemme, Micromachined barbed spikes for mechanical chip attachment, Sensors and Actuators A: Physical, 95 (2002) 94-99.
    [26] P. Griss, H.K. Tolvanen-Laakso, P. Meriläinen, G. Stemme, Characterization of micromachined spiked biopotential electrodes, IEEE Transactions on Biomedical Engineering, 49 (2002) 597-604.
    [27] C. O’Mahony, F. Pini, K.G. McCarthy, Microneedle-based electrodes with integrated through-silicon via for biopotential recording, Procedia Engineering, 25 (2011) 992-995.
    [28] E. Forvi, M. Bedoni, R. Carabalona, M. Soncini, P. Mazzoleni, F. Rizzo, C. O’Mahony, C. Morasso, D.G. Cassarà, F. Gramatica, Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations, Sensors and Actuators A: Physical, 180 (2012) 177-186.
    [29] C.L. Chang, C.W. Chang, H.Y. Huang, C.M. Hsu, C.H. Huang, J.C. Chiou, C.H. Luo, A power-efficient bio-potential acquisition device with DS-MDE sensors for long-term healthcare monitoring applications, Sensors (Basel), 10 (2010) 4777-4793.
    [30] L.M. Yu, F.E.H. Tay, D.G. Guo, L. Xu, K.L. Yap, A microfabricated electrode with hollow microneedles for ECG measurement, Sensors and Actuators A: Physical, 151 (2009) 17-22.
    [31] W. Zhou, R. Song, X. Pan, Y. Peng, X. Qi, J. Peng, K.S. Hui, K.N. Hui, Fabrication and impedance measurement of novel metal dry bioelectrode, Sensors and Actuators A: Physical, 201 (2013) 127-133.
    [32] A. Gruetzmann, S. Hansen, J. Müller, Novel dry electrodes for ECG monitoring, Physiological Measurement, 28 (2007) 1375-1390.
    [33] G. Ruffini, S. Dunne, E. Farres, J. Marcopallares, C. Ray, E. Mendoza, R. Silva, C. Grau, A dry electrophysiology electrode using CNT arrays, Sensors and Actuators A: Physical, 132 (2006) 34-41.
    [34] H.C. Jung, J.H. Moon, D.H. Baek, J.H. Lee, Y.Y. Choi, J.S. Hong, CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring, Biomedical Engineering, IEEE Transactions on, 59 (2012) 1472-1479.
    [35] I. Tong, Y. Sun, K.T. Eui, W. Hun, K.K. Jin, W.E. Je, R.J. Sadleir, Nanofiber web textile dry electrodes for long-term biopotential recording, Biomedical Circuits and Systems, IEEE Transactions on, 7 (2013) 204-211.
    [36] V. Marozas, A. Petrenas, S. Daukantas, A. Lukosevicius, A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings, Journal of Electrocardiology, 44 (2011) 189-194.
    [37] A.R. Mota, L. Duarte, D. Rodrigues, A.C. Martins, A.V. Machado, F. Vaz, P. Fiedler, J. Haueisen, J.M. Nóbrega, C. Fonseca, Development of a quasi-dry electrode for EEG recording, Sensors and Actuators A: Physical, 199 (2013) 310-317.
    [38] Y. Chen, W. Pei, S. Chen, X. Wu, S. Zhao, H. Wang, H. Chen, Poly (3,4-ethylenedioxythiophene) (PEDOT) as interface material for improving electrochemical performance of microneedles array-based dry electrode, Sensors and Actuators B: Chemical, 188 (2013) 747-756.
    [39] J.H. Moon, D.H. Baek, Y.Y. Choi, K.H. Lee, H.C. Kim, S.H. Lee, Wearable polyimide–PDMS electrodes for intrabody communication, Journal of Micromechanics and Microengineering, 20 (2010) 025032.
    [40] L.F. Wang, J.Q. Liu, B. Yang, C.S. Yang, PDMS-based low cost flexible dry electrode for long-term EEG measurement, Sensors Journal, IEEE, 12 (2012) 2898-2904.
    [41] H.L. Kim, M.G. Kim, C. Lee, J.H. Lee, Y.J. Kim, Miniaturized one-point detectable electrocardiography sensor for portable physiological monitoring systems, Sensors Journal, IEEE, 12 (2012) 2423-2424.
    [42] D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal Electronics, Science, 333 (2011) 838-843.
    [43] L.D. Liao, I.J. Wang, S.F. Chen, J.Y. Chang, C.T. Lin, Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation, Sensors, 11 (2011) 5819-5834.
    [44] N.S. Dias, J.P. Carmo, A.F. da Silva, P.M. Mendes, J.H. Correia, New dry electrodes based on iridium oxide (IrO) for non-invasive biopotential recordings and stimulation, Sensors and Actuators A: Physical, 164 (2010) 28-34.
    [45] O. Graudejus, P. Gorrn, S. Wagner, Controlling the morphology of gold films on poly(dimethylsiloxane), ACS applied materials & interfaces, 2 (2010) 1927-1933.
    [46] O. Fakhr, K. Karrai, P. Lugli, Direct transfer patterning of gold films with minimal processing steps, Thin Solid Films, 520 (2012) 2600-2604.
    [47] J.Y. Baek, G.H. Kwon, J.Y. Kim, J.H. Cho, S.H. Lee, K. Sun, S.H. Lee, Stable deposition and patterning of metal layers on the PDMS substrate and characterization for the development of the flexible and implantable micro electrode, Solid State Phenomena, 124-126 (2007) 165-168.
    [48] C. Namsun, Y. Soonki, K. Sohee, Fabrication of stretchable and flexible electrodes based on PDMS substrate, in: Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012, pp. 247-250.
    [49] C. Namsun, Y. Soonki, K. Sohee, A largely deformable surface type neural electrode array based on PDMS, Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 21 (2013) 544-553.
    [50] T. Young, An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London, 95 (1805) 65-87.
    [51] K. Liu, Y. Tian, L. Jiang, Bio-inspired superoleophobic and smart materials: design, fabrication, and application, Progress in Materials Science, 58 (2013) 503-564.
    [52] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 28 (1936) 988-994.
    [53] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society, 40 (1944) 546-551.
    [54] W. Choi, A. Tuteja, J.M. Mabry, R.E. Cohen, G.H. McKinley, A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, Journal of Colloid and Interface Science, 339 (2009) 208-216.
    [55] C.Y. Chen, C.L. Chang, T.F. Chien, C.H. Luo, Flexible PDMS electrode for one-point wearable wireless bio-potential acquisition, Sensors and Actuators A: Physical, 203 (2013) 20-28.
    [56] C.Y. Chen, C.L. Chang, C.W. Chang, S.C. Lai, T.F. Chien, H.Y. Huang, J.C. Chiou, C.H. Luo, A Low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications, Sensors, 13 (2013) 3077-3091.
    [57] Y.H. Huang, J.T. Wu, S.Y. Yang, Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro-cavity, Microelectronic Engineering, 88 (2011) 849-854.
    [58] D.S. Kim, B.K. Lee, J. Yeo, M.J. Choi, W. Yang, T.H. Kwon, Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity, Microelectronic Engineering, 86 (2009) 1375-1378.
    [59] M.M. Stanton, R.E. Ducker, J.C. MacDonald, C.R. Lambert, W. Grant McGimpsey, Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces, Journal of Colloid and Interface Science, 367 (2012) 502-508.
    [60] T.O. Yoon, H.J. Shin, S.C. Jeoung, Y.I. Park, Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification, Optics Express, 16 (2008) 12715-12725.
    [61] M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, L. Jiang, Super-hydrophobic PDMS surface with ultra-low adhesive force, Macromolecular Rapid Communications, 26 (2005) 1805-1809.
    [62] B.K. Nayak, P.O. Caffrey, C.R. Speck, M.C. Gupta, Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing, Applied Surface Science, 266 (2013) 27-32.
    [63] B.S. Yilbas, M. Khaled, N. Abu-Dheir, N. Aqeeli, S.Z. Furquan, Laser texturing of alumina surface for improved hydrophobicity, Applied Surface Science, 286 (2013) 161-170.
    [64] L. Romoli, G. Tantussi, G. Dini, Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices, Optics and Lasers in Engineering, 49 (2011) 419-427.
    [65] M. Riahi, Fabrication of a passive 3D mixer using CO2 laser ablation of PMMA and PDMS moldings, Microchemical Journal, 100 (2012) 14-20.
    [66] D.J. Beebe, G.A. Mensing, G.M. Walker, Physics and applications of microfluidics in biology, Annual Review of Biomedical Engineering, 4 (2002) 261-286.
    [67] E. Sollier, C. Murray, P. Maoddi, D.D. Carlo, Rapid prototyping polymers for microfluidic devices and high pressure injections, Lab on a Chip, 11 (2011) 3752-3765.
    [68] C.Y. Chen, H.K. Ken, S.H. Kuo, S.H. Li, C.H. Luo, J. Cui, Development of single cell biochip platform based on silicon for multiple patch clamping technology, in: Nano/Molecular Medicine and Engineering (NANOMED), 2009 IEEE International Conference on, 2009, 138-141.
    [69] C.Y. Chen, H.K. Ken, S.H. Kuo, and C.H. Luo, Development of multi-electrode biochip for whole-cell recording, 18th Symposium on Nano Device Technology (SNDT 2011), (2011).
    [70] B.J. Holland, J.N. Hay, The effect of polymerisation conditions on the kinetics and mechanisms of thermal degradation of PMMA, Polymer Degradation and Stability, 77 (2002) 435-439.
    [71] A. Franco, M. Lanzetta, L. Romoli, Experimental analysis of selective laser sintering of polyamide powders: an energy perspective, Journal of Cleaner Production, 18 (2010) 1722-1730.
    [72] D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai, C.S. Ha, Advanced polyimide materials: Syntheses, physical properties and applications, Progress in Polymer Science, 37 (2012) 907-974.
    [73] D.G. Waugh, J. Lawrence, On the use of CO2 laser induced surface patterns to modify the wettability of poly(methyl methacrylate) (PMMA), Optics and Lasers in Engineering, 48 (2010) 707-715.
    [74] Y. Peykova, S. Guriyanova, O.V. Lebedeva, A. Diethert, P. Müller-Buschbaum, N. Willenbacher, The effect of surface roughness on adhesive properties of acrylate copolymers, International Journal of Adhesion and Adhesives, 30 (2010) 245-254.
    [75] D.G. Waugh, J. Lawrence, E.M. Brown, Osteoblast cell response to a CO2 laser modified polymeric material, Optics and Lasers in Engineering, 50 (2012) 236-247.
    [76] M. Groenendijk, Fabrication of super hydrophobic surfaces by fs laser pulses, Laser Technik Journal, 5 (2008) 44-47.
    [77] K.A. Ng, P.K. Chan, A CMOS analog front-end IC for portable EEG/ECG monitoring applications, IEEE Transactions on Circuits and Systems—I: Regular Papers, 52 (2005) 2335-2347.
    [78] R.F. Yazicioglu, P. Merken, R. Puers, C.V. Hoof, A 200 uW eight-channel EEG acquisition ASIC for ambulatory EEG systems, IEEE Journal of Solid-state Circuits, 43 (2008) 3025-3038.
    [79] R.R. Harrison, C. Charles, A low-power low-noise CMOS amplifier for neural recording applications, IEEE Journal of Solid-state Circuits, 38 (2003) 958-965.
    [80] R. Martins, S. Selberherr, F.A. Vaz, A CMOS IC for portable EEG acquisition systems, IEEE Transactions on Instrumentation and Measurement, 47 (1998) 1191-1196.
    [81] S.C. Lai, W.C. Chien, C.S. Lan, M.K. Lee, C.H. Luo, S.F. Lei, An efficient DCT-IV-based ECG compression algorithm and its hardware accelerator design, in: Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013, pp. 1296-1299.
    [82] A. Karilainen, S. Hansen, J. Müller, Dry and capacitive electrodes for long-term ECG monitoring, Eighth Annual Workshop on Semiconductor Advances for Future Electronics, (2005) 155-161.
    [83] Holter ECG System (TLC4000), Contec Medical Systems Co., Ltd., http://www.contecmed.com/.
    [84] Holter Recorder (DMS300–4A), DM Software Inc., http://www.dmsecg.com/.
    [85] DigiTrak XT holter recorder, Philips Healthcare, http://www.healthcare.philips.com/.
    [86] Zio® XT Patch, iRhythm Technologies, Inc., http://www.irhythmtech.com/.
    [87] D. Lucani, G. Cataldo, J. Cruz, G. Villegas, S. Wong, A portable ECG monitoring device with Bluetooth and Holter capabilities for telemedicine applications, in: Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE, 2006, 5244-5247.

    下載圖示 校內:2019-07-15公開
    校外:2019-07-15公開
    QR CODE