簡易檢索 / 詳目顯示

研究生: 劉杰諠
Liu, Jie-Xuan
論文名稱: 電動載具充電用非接觸式編織型感應饋電系統之研製
Study on Contactless Weaving-Type Inductive Power Transmission Charging System for Electric Vehicles
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: 非接觸式電動載具充電系統
外文關鍵詞: contactless, electric vehicles, charging system
相關次數: 點閱:120下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究電動載具充電用非接觸式編織型感應饋電系統之研製,其特點是以編織型且無鐵芯方式繞製初級側繞組,使充電平台可以提供均勻磁場,以抵銷反向磁通,改善傳統耦合結構必需對位良好之問題,提高感應充電平台以及電動載具對於位移上的容忍度。並探討編織型繞組結構之可行性,且為增加電能傳輸能力。文中針對目前市面上非接觸式感應電能傳輸技術應用在各種不同情況下做介紹,以及探討傳統型與編織型耦合結構優缺點,最後依應用場合從中選出適合的結構,並且搭配周邊電路構成長寬皆為28公分的電動載具用非接觸式感應充電平台。最後實驗結果顯示,於9公分氣隙下,最高電能傳輸效率為38.5%,於2公分氣隙下,最大傳輸能力為690瓦,效率為81.5%,且充電電流為2.5A。

    The purpose of the thesis is to study a weaving-type and Coreless contactless inductive power transmission system with electromagnetic coupling technique. A weaving-type inductive platform which consists of a winding coil is proposed for improving the uniform magnetic field distribution over the charging surface. Effectiveness for stabilizing the amount of the transmitted power against a load changes or the secondary side’s displacement are the features of weaving-type coils. Finally, a design procedure is proposed and verified by the experiments and choose a appropriate coupling structure for this applications. A weaving-type contactless inductive charging platform whose length and width is both 28 cm and an transmission efficiency of about 38.5% has been achieved for the coupled structures through 9 cm air gap. The highest power of load is approximately 690 watts through 2 cm air gap and transmission efficiency of about 81.5% and charging current is 2.5A.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究方法 5 1-4 論文大綱 6 第二章 非接觸感應耦合原理與特性 8 2-1 前言 8 2-2 感應線圈基本原理 8 2-3 感應電能傳輸之工作原理 9 2-4 感應線圈之非理想效應與損耗 10 2-5 非接觸式編織型耦合結構 12 2-6 非理想變壓器等效模型分析 17 2-7 系統架構 19 第三章 導軌型感應耦合結構模擬與研製 21 3-1 前言 21 3-2 非接觸式充電平台整體系統架構簡述 21 3-3 非接觸式感應電能傳輸系統之分析 22 3-4 驅動電路分析 23 3-5 諧振電路之分析 24 3-6 編織型感應耦合結構模擬與分析 28 3-7 二次電池與電池充電策略 32 3-7-1 鉛酸蓄電池 33 3-7-2 鎳鎘電池 33 3-7-3 鎳氫電池 33 3-7-4 鋰離子電池 34 3-7-5 磷酸鐵鋰電池 34 3-8 電池充電策略 35 3-8-1 定電流充電法 35 3-8-2 定電壓充電法 35 3-8-3 定電流與定電壓充電法 36 3-8-4 脈衝充電法 37 第四章 非接觸感應充電平台系統硬體電路 38 4-1 前言 38 4-2 整體系統電路架構 38 4-3 初級側電路 39 4-3-1 全橋變流器 39 4-3-2 電流峰值追蹤電路 45 4-4 感應充電平台結構繞製 47 4-5 次級側電路 49 4-5-1 整流濾波電路 49 4-5-2 降壓式轉換器 50 4-5-3 充電電路 51 4-6 非接觸式感應充電平台設計流程 54 第五章 系統模擬與實驗結果 57 5-1 前言 57 5-2 系統規格與硬體電路 57 5-3 IsSpice電路模擬 58 5-4 系統實驗結果與波形量測 61 5-5 耦合結構量測結果與充電曲線 65 第六章 結論與未來研究方向 70 6-1 結論 70 6-2 未來研究方向 71 參考文獻 72

    [1] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [2] S. Ryo, H. Cha, Y. Park, and J. Baek, “Analysis of the contactless power transfer system using modelling and analysis of the contactless transformer,” in Proc. IEEE IECON ’05, 2005, pp. 1036-1642.
    [3] J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, 2008.
    [4] W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” in Proc. IEEE PESC’02, 2002, pp. 579-584.
    [5] A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys., vol. 323, no. 1, pp. 34-48, 2008.
    [6] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, pp. 797-801.
    [7] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. BuchheitH, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON’97, 1997, vol. 2, pp. 792-797.
    [8] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC’07, 2007, pp. 2779-2784.
    [9] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC’08, 2008, pp. 4320-4325.
    [10] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC’05, 2005, vol. 2, pp. 1133-1136.
    [11] J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC’95, 1995, pp. 245-251.
    [12] I. J. Yoon and H. Ling, “Realizing efficient wireless power transfer using small folded cylindrical helix dipoles,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 846-849, 2010.
    [13] J. Park, Y. Tak, Y. Kim, Y. Kim, and S. Nam, “Investigation of adaptive matching methods for near-field wireless power transfer,” IEEE Trans. Antennas Propag., vol. 59, no 5, pp. 1769-1773, 2011.
    [14] Z. Yan, Q. Yang, H. Chen, C. Zhang, and G. Xu, “Modeling and experimental analysis of helical resonator for wireless power transmission system,” in Proc. IEEE ICECE, 2010, pp. 3886-3892.
    [15] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. BuchheitH, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON’97, 1997, vol. 2, pp. 792-797.
    [16] A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Elsevier, Annals of Physics 323 (2008), 34–48.
    [17] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless energy transfer via strongly coupled magnetic resonances,” Science 317, 83 (2007), DOI:10.1126/science.1143254.
    [18] Marin Soljacic, Power transfer through strongly coupled resonances, Massachusetts Institute of Technology, 2007
    [19] W. Bingnan, H. T. Koon, N. Tamotsu, Y. William, B. John, and Z. Jinyun “Wireless power transfer with metamaterials,” in Proc. IEEE EUCAP ’11, 2011, pp. 3905-3908.
    [20] R. Radys, J. Hall, J. Hayes, and G. Skutt, “Optimizing AC and DC winding losses in ultra-compact, high-frequency, high-power transformers,” in Proc. IEEE APEC’99, 1999, pp. 14-18.
    [21] G. Wang, W. Liu, M. Sivaprakasam, J. D. Weiland, and M. S. Humayun, “High efficiency wireless power transmission with digitally configurable stimulation voltage for retinal prosthesis,” in Proc. Neural Engineering’05‚ 2005, vol. 16-19, pp. 543 - 546.
    [22] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. PowerCon’00‚ 2000, vol. 1, pp. 79-84.
    [23] D. Spackman, D. Kacprzak, and J. Sykulski, “Magnetic interference in multi-pickup monorail inductively coupled power transfer systems,” Journal of the Japan Society of Applied Electromagnetics and Mechanics, vol.15, no. 3, pp. 238-241, 2006.
    [24] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Characterization of coreless printed circuit board (PCB) transformers,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1275-1282, 2000.
    [25] X. Liu, P. W. Chan, and S. Y. R. Hui, “Finite element simulation of a universal contactless battery charging platform,” in Proc. IEEE APEC’05‚ 2005, vol.3, pp. 1927-1932.
    [26] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless Battery Charging platform for portable Consumer Electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
    [27] X. Liu and S. Y. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [28] X. Liu and S. Y. Hui, “Simulation study and experimental verification of a universal contactless Battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, 2007.
    [29] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA’07‚ 2007, vol. 23-25, pp. 68-73.
    [30] N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC’03, 2003, pp. 853-860.
    [31] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Power Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
    [32] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. PowerCon’00‚ 2000, vol. 1, pp. 85-90.
    [33] W. Zhou and H. Ma, “Design considerations of compensation topologies in ICPT system,” in Proc. IEEE APEC’07, 2007, pp. 985-990.
    [34] C. S. Wang , O. H. Stielau, and G. A. Covic, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE IECON’01, 2001, pp. 1049-1054.
    [35] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
    [36] X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. APEC’08‚ 2008, pp. 645-650.
    [37] T. Imura, “Study on maximum air-gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit,” in Proc. IEEE ISIE, 2010, pp. 3664-3669.
    [38] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE NEMS, 2010, pp. 604-607.
    [39] K. W. Klontz, “Skin and proximity effect in multi-layer transformer windings of finite thickness,” in Proc. IEEE IAS, 1995, vol. 1, pp. 851-858.
    [40] U. K. Madawala, D. J. Thrimawithana, and Nihal Kularatna, “An ICPT-supercapacitor hybrid system for surge-free power transfer,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3287-3297, 2007.
    [41] C. H. Lai, C. S. Wang, H. Y. Yang, and T. R. Chen, “Design and implement of contactless charger with battery management,” in Proc. IEEE EDSSC ’07, 2007, pp. 1043-1046.
    [42] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, T. Watanabe, and T. Satoh, “Consideration on cordless power station- contactless power transmission system,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5037-5039, 1996.
    [43] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, and J. Kawase, “Power transmission of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
    [44] S. H. Lee and R. D. Lorenz, “Development and validation of model for 95% efficiency, 220W wireless power transfer over a 30cm air-gap,” in Proc. IEEE ECCE, 2010, pp. 885-892.
    [45] X. Zhang, Q. Yang, H. Chen, Y. Li, and Z. Yan, “The application of non-contact power transmission technology (NPT) in the modern transport system,” in Proc. IEEE ICMA, 2010, pp. 345-349.
    [46] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE TECHNO-OCEAN ’04, 2004, pp. 2341-2345
    [47] U. K. Madawala and D.J. Thrimawithana, “A Primary Side Controller for Inductive Power Transfer Systems,” in Proc. IEEE ICIT ’10, 2010, pp. 661-666.
    [48] T. Imura, H. Okabe, and Y. Hori, “Basic Experimental Study on Helical Antennas of Wireless Power Transfer for Electric Vehicles by using Magnetic Resonant Couplings,” in Proc. IEEE VPPC ’09, 2009, pp. 936-940.
    [49] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
    [50] 賴弘偉,分區激發感應結構於非接觸式多負載充電平台之研究,國立成功大學電機工程學系碩士論文,2009年。
    [51] 蘇哲彬,電動載具用非接觸式感應饋電軌道:交錯繞製式編織型陣列區塊感應耦合系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [52] 李昆蔚,電動載具用編織型非接觸式感應充電平台之研製,國立成功大學電機工程學系碩士論文,2011年。
    [53] 李世華,電動載具用導軌型非接觸式感應饋電軌道之研製,國立成功大學電機工程學系碩士論文,2011年。
    [54] 李嘉猷、劉杰諠、沈紘宇,“編織型非接觸式感應電能傳輸系統之研製,” 中華民國第三十二屆電力工程研討會論文集,2011年,1351-1355頁。

    下載圖示 校內:2015-08-20公開
    校外:2015-08-20公開
    QR CODE