簡易檢索 / 詳目顯示

研究生: 張書誠
Chang, Shu-Cheng
論文名稱: 含邊緣終結結構寬能隙半導體碳化矽及氮化鎵蕭基二極體之研究
Investigation of Wide Bandgap Semiconductor SiC and GaN Schottky Rectifiers with Edge Termination Design
指導教授: 劉博文
Liou, Bor-Wen
王水進
Wang, Shui-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 121
中文關鍵詞: 碳化矽氮化鎵雷射剝離電鍍鎳邊緣終結蕭基二極體
外文關鍵詞: laser lift-off, Schottky diodes, nickel electroplating, edge termination, gallium nitride, silicon carbide
相關次數: 點閱:129下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們進行含高阻值材料(resistive Schottky field plate, RESP)及浮動金屬護環(floating metal ring, FMR)邊緣終極(edge termination, ET)結構的碳化矽(SiC)蕭基二極體的理論模擬和實驗探討,以及提出一種新型結構之具鍍鎳基板與雷射剝離技術(laser lift-off, LLO)氮化鎵(GaN)蕭基二極體。
      於碳化矽蕭基二極體研究方面,我們首先針對浮動金屬護環結構的參數(包含金屬含的數目、寬度以及金屬環間的間距等)對表面電場分布和崩潰電壓的影響進行研究。二維模擬結果顯示於金屬護環結構中,金屬環上的電壓隨著與主電極的距離增加而減少,利用金屬護環可以有效地降低元件表面的電場強度。模擬結果顯示和不具邊緣終結結構的元件比較,具有兩個浮動金屬護環的結構可以提升元件崩潰電壓142%。在實驗方面,我們利用鋁(Al)、鈦(Ti)、鎳(Ni)和金(Au)等蕭基金屬同時當作元件之主電極和護環結構之電極,所研製之4H碳化矽蕭基二極體包含1~3浮動金屬環結構,並且其崩潰電壓落在476~1080伏特的範圍。針對鋁、鈦、鎳和金蕭基二極體所萃取出的理想因子分別是0.77、0.99、1.38和 1.52電子伏特。比較模擬和實驗的結果,兩者具有相當高的吻合度。
      我們亦針對一種新的金/鈦/鋁於n型碳化矽材料的歐姆接觸進行研究,同時探討其熱穩定性。在經過5分鐘的800oC或更高溫度的快速熱退火製程後,所測得的特徵接觸電阻值(Specific contact resistances, SCRs)落在10-4~ 10-6 Ωcm2的範圍,可得到最低的特徵接觸電阻值為2.8×10-6 Ωcm2。和相關文獻比較,針對Al/Ti系列的歐姆接觸, 我們得到了約1~2 order(s)的改善。X射線分析的果顯示,鈦的矽化物(TiSi2 and TiSi) 和Ti3SiC2的形成可能是造成歐姆接觸的主因。實驗結果顯示,金/鈦/鋁於n型碳化矽的歐姆接觸於100~500oC的環境下退火20個小時後,阻值依然維持穩定。
      於氮化鎵蕭基二極體方面,我們提出一種利用電鍍鎳及雷射剝離技術製作的新型結構氮化鎵蕭基二極體。我門提供完整的製程步驟,利用鎳基板可避免由於基板黏(wafer bonding)技術產生的高溫和高壓以及碳化矽或氮化鎵基板所帶來的高成本。而雷射剝離技術的應用是用以將氮化鎵及鎳基板和原先的藍寶石基板分離,這個製程同時可以定義元件結構。
    我們採用鈦/鋁/鈦/金以當作氮化鎵蕭基二極體的歐姆接觸,800oC條件下退火30秒可以獲得最低的特徵接觸電阻值6.64×10-5 Ωcm2。由掃描式電子顯微鏡(SEM)的照面可以看出,雷射剝離後的氮化鎵表面是呈現氮極化(N-polarity)的現象。和鎵極化(Ga-polarity)相比,氮極化的表面有比較高的缺陷密度和比較粗糙的表面。這種表面的粗糙與大量的缺陷造成銷基金屬金、鉑(Pt)和鎳被釘(pin)在介面的缺陷上,造成其蕭基位障高度落在0.42~0.48 電子伏特的範圍。實驗結果顯示,利用氫氧化鉀溶液經過3秒到1分鐘的處理,可以有效的改善鎳金屬之氮化鎵蕭基二極體的順向特性:理想因子由1.26降到1.06、蕭基位障高度由0.44提升到0.78電子伏特;同時,反向崩潰特性也被改善了。

      In this dissertation, both of the simulation and experimental results of the use of floating metal ring (FMR) with resistive Schottky field plate (RESP) edge termination (ET) structure to improve breakdown voltage (VBD) 4H-SiC Schottky barrier diodes (SBDs) as well as a novel vertical structure of Ni/n-GaN Schottky barrier diode (SBD) with metallic substrate employing nickel electroplating and laser lift-off (LLO) processes is proposed and its electrical characteristics is investigated.
    For SiC SBDs, influence of the FMR’s parameters, such as the number and width of metal rings, the space between two neighboring metal rings, etc., on surface electric filed distribution and breakdown voltage were studied. Two-dimensional simulation results reveal that the induced voltage on FMR increases with decreasing the distance to the main electrode, which is beneficial to reduce surface electric field intensity. As compared to the diode without ET design, about 142% improvement in VBD of SBDs has been realized in SBDs with a 2-ring FMR ET structure. In experiments, the same Schottky metal including Al, Ti, Ni, and Au has been used for both the main electrode and FMR structure. 4H-SiC SBDs with 1~3 FMRs ET design have been successfully fabricated and VBD in the range of 476~1080 V has been achieved. The average Schottky barrier height extracted from Al, Ti, Ni, and Au-diodes at room temperature are 0.77, 0.99, 1.38, and 1.52 eV, respectively. Comparisons between the calculated and experimental results were made and a good agreement has been obtained.
      A novel ohmic contact system of Au/Ti/Al to n-type 4H-SiC and its thermal stability are also studied. Specific contact resistances (SCRs) in the range of 10-4~ 10-6 Ωcm2, and the best SCR as low as 2.8*10-6 Ωcm2 has been generally achieved after rapid thermal annealing in Ar for 5 min at 800oC and above. About 1~2 order(s) of magnitude improvement in SCR as compared to those Al/Ti series ohmic systems in n-SiC reported in literature is obtained. XRD analysis shows that the low resistance contact would be attributed to the formation of titanium silicides (TiSi2 and TiSi) and Ti3SiC2 at the metal/n-SiC interface after thermal annealing. The Au/Ti/Al ohmic contact is thermally stable during thermal aging treatment in Ar at temperature in the 100~500oC range for 20 hrs.
      For GaN SBDs, a novel vertical structure of Ni/n-GaN Schottky barrier diode (SBD) which combined with nickel metal electroplating and laser lift-off (LLO) processes is investigated. Complete process flow is proposed. Ni electroplating substrate contained advantages which without any high temperature or high pressure process for wafer bonding and no expensive replacement substrate such as SiC or GaN is required. While LLO process is used to separate GaN layer with Ni substrate and original sapphire substrate, at the same time, device area patterning has also be processed.
      The used of Ti/Al/Ti/Au contact system has the lowest SCR 6.64×10-5 Ωcm2 after annealed at 800oC for 30 sec in Ar ambiance. The photographs of SEM show the surface polarity for GaN after LLO process behaves as N-polarity. As compared with Ga-polarity, surface of N-polarity GaN contains larger defect density and appears higher surface roughness. This surface roughness of untreated GaN surface after LLO process is sufficient large and contain a large number of defects such that the Schottky barrier height of Au, Pt, and Ni on n-GaN is pinned and all of them are around 0.42~0.48 eV. Experimental result shows the KOH treatment after LLO process for 3 sec to 1 min would improve either forward quality of ideality factor (1.26-1.06), Schottky barrier height (0.44-0.78 eV) or reverse blacking capacity for Ni/n-GaN SBDs.

    Chinese abstract i English abstract iii Acknowledgement (Chinese) vii Table captions xii Figure captions xiii Chapter 1 Introduction 1.1 Electrical properties of SiC 1 1.2 Current progress in SiC Schottky rectifiers 5 1.3 Electrical properties and current progress of GaN 6 1.4 Motivation and Overview of the dissertation 10 Chapter 2 Metal-Semiconductor Junctions 2-1 The basic physics of Schottky contact 12 2-1-1 Current transport mechanisms 13 2-1-2 Interface charge effect 15 2-1-3 Schottky barrier lowing effect 16 2-1-4 Plane and planar Schottky barrier diodes 17 2-2 Ohmic contacts 18 2-2-1 Ohmic contact on SiC 21 2-2-2 Ohmic contact on GaN 23 2-2-3 Contact resistance measurement - Circular transmission line methods 24 2-3 Schottky barrier diode performance 26 2-3-1 Specific on-resistance 26 2-3-2 Forward voltage drop 28 2-3-3 Parameter extraction for SBDs using Modified Norde-method 28 2-3-4 Reverse characteristics of SBDs 29 2-3-5 Edge termination for high breakdown voltage devices 30 Chapter 3 The Simulation of SiC Schottky Barrier Diodes 3-1 SiC parameters used in MEDICI simulation 33 3-2 Model consideration 34 3-2-1 Schottky barrier lowing effect 35 3-2-2 Mobility model 36 3-2-3 Miscellaneous 39 3-3 Devices structures and edge termination schemes of SBDs 44 3-4 Results and discussion 46 3-4-1 Floating metal ring (FMR) edge termination 47 3-4-2 FMR with resistive Schottky field plate edge termination 52 3-4-3 Area consumption consideration 61 3-5 Mask design for high breakdown SiC Schottky barrier diodes 62 Chapter 4 Fabrication of SiC Schottky Barrier Diodes 4-1 Device Processing 64 4-2 Al/Ti/Au Ohmic contact 67 4-2-1 Experiments 68 4-2-2 Result and discussion 69 4-3 Schottky barrier diodes with floating metal ring edge termination 4-3-1 Device fabrication 73 4-3-2 Forward characteristics 74 4-3-3 Reverse characteristics 77 4-3-4 Comparisons with simulation results 80 Chapter 5 Fabrication of GaN Schottky Barrier Diodes 5-1 Vertical-structured Schottky diode with electroplating nickel substrate 81 5-1-1 Current progress in GaN vertical structure 81 5-1-2 Nickel electroplating 85 5-1-3 Laser lift off 87 5-2 Experiments, results, and discussion 90 5-2-1 Device fabrication 91 5-2-2 Ti/Al/Ti/Au Ohmic contact characteristics 92 5-2-3 Current-voltage characteristics of GaN SBDs 95 Chapter 6 Conclusions and Future Works 6-1 Conclusions 103 6-2 Suggestion for future works 105 References 107 Publication list 121 Vita 123

    1. G. B. Gao, J. Sterner, and H. Morkoc, “High frequency performance of SiC heterojunction bipolar transistors”, IEEE trans. Electron Devices vol. 41, pp.1092, 1994.
    2. D. L. Barrett and R. B. Campbell, “Electron mobility measurements in SiC polytypes”, J. Appl. Phys, vol. 38, pp. 53, 1967.
    3. C. E. Weitzel, J. W. Palmeur, C. Carter, K. Mooce, K. J. Mordquist, S. Allen, C. Thero, and M. Bhatnagar, “Silicon Carbide High-Power Devices”, IEEE trans. Electron Devices vol. 43, pp. 1732, 1996.
    4. V. Khemka, V. Ananthan, and T. P. Chow, “A Fully Planarized 4H-SiC Trench MOS Barrier Schottky (TMBS) Rectifier”, IEEE Electron Device Letters, vol. 21, pp. 286, 2000.
    5. R. Singh, J. A. Cooper, Jr., M. R. Melloch, T. P. Chow, and J. W. Palmour, “SiC Power Schottky and PiN Diodes”, IEEE trans. Electron Devices, vol. 49, pp. 665, 2002.
    6. J. A. Cooper, Jr., and A. Agarwal, “SiC Power-Switching Devices—The Second Electronics Revolution?”, Proceedings of the IEEE, vol.90, pp956, 2002.
    7. D. T. Morisette and J. A. Cooper, Jr, “Theoretical Comparison of SiC PiN and Schottky Diodes Based on Power Dissipation Considerations”, IEEE trans. Electron Devices, vol. 49, pp. 1657, 2002.
    8. Y. Singh and M. J. Kumar, “A New 4H-SiC Lateral Merged Double Schottky (LMDS) Rectifier With Excellent Forward and Reverse Characteristics”, IEEE trans. Electron Devices”, vol. 48, pp.2695, 2001.
    9. H. Yu, J. Lai, X. Li, Y. Luo, L. Fursin,J. H. Zhao, P. Alexandrov, B. Wright, and M. Weiner, “An IGBT and MOSFET Gated SiC Bipolar Junction Transistor”, IEEE Industry Applications Conference, pp. 2609, 2002.
    10. R. W. Keyes, Proc. IEEE, vol. 60, pp. 225, 1972.
    11. B. J. Baliga, J. Appl. Phys., vol. 53, pp. 1759, 1982.
    12. B. J. Baliga, “Power semiconductor device figure of merit for high-frequency applications”, IEEE Electron Device Lett., vol. 10, pp. 455, 1989.
    13. T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron Devices, vol. 41, pp. 1481, 1994.
    14. G. R. Fisher and P. Barnes, “Toward a unified view of polytypism in silicon carbide,” Phil. Mag. B, vol. 61, no. 2, pp. 217-236, Feb. 1990.
    15. A. R. Powell and L. B. Rowland, Member, IEEE, “SiC Material-Progress, Status, and Potential Roadblocks”, IEEE Proc., vol 60, pp.942-955, 2002.
    16. M. Bhatnagar, P. K. McLarty, and B. J. Baliga, “Silicon carbide high voltage (400 V) Schottky barrier diodes”, IEEE Electron Device Lett., vol. 13, p. 501, sept. 1992.
    17. R. Rupp, M. Treu, A. Mauder, E. Griebl, W. Werner, W. Bartsch, and D. Stephani, “Performance and reliability issues of SiC Schottky diodes”, Mat. Sci. Forum, vol. 338-342, pp. 1167-1170, 2000.
    18. S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett. 42, 427 (1983)
    19. H. Amano, N. Sawaki, I. Akasaki, Y. Touoda, Appl. Phys. Lett. 48, 353 (1986)
    20. H. MorkoG, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device technology”, J. Appl. Phys. vol. 76, pp. 1363, 1994.
    21. Y. Kato, S. Kitamura, K. Hiramatsu, N. Sawaki, J. Cryst. Growth 144 (1994) 133.
    22. E. H. Rhoderick, and R. H. Williams, “Metal-Semiconductor contacts”, Oxford Science Publications, 1988.
    23. R H Williams, V Montgomtry, R R Varma, and A McKinley, “The influence of interfacial layers on the nature of gold contact to silicon and indium phosphide”, J. Phys. D: Appl. Phys., vol. 10, pp. L253, 1977.
    24. D. A. Neamen, “Semiconductor physics & devices”, 2nd edition, 1997.
    25. S. M. Sze, Physics of Semiconductor Devices, 2nd Ed., John Wiley & Sons, New York, 1981.
    26. R. Kakabakov, L. K. Kolaklieva, N. Hristeva, G. Lepoeva, and K. Zekentes, “Thermally stable low resistivity ohmic contacts for high power and high temperature SiC device applications”, Proc. 23rd International Conf. on Microelectronics pp. 205, 2002.
    27. S. Y. Han, K. H. Kim, J. K. Kim, H. W. Jang, K. H. Lee, N. K. Kim, E. D. Kim, and J. J. Lee, “Ohmic contact formation mechanism of Ni on n-type 4H–SiC”, Appl. Phys. Lett. 79, pp. 1816, 2001.
    28. L. G. Fursin, J. H. Zhao and M. Weiner, “Nickel ohmic contacts to p and n-type 4H-SiC”, Electronics Lett. 37, pp. 1092, 2001.
    29. Ts. Marinova, A. Kakanakova-Georgieva, V. Krastev, R. Kahanakov, M. Neshev, L. Kassamakova, O. Noblanc, C. Arnodo, S. Cassette, C. Brylinski, B. Pecz, G. Radnoczi, Gy. Vincze, “Nickel based ohmic contacts on SiC”, Materials Science and Engineering B46, pp. 223, 1997.
    30. Dev Alok, B. J. Baliga, P. K. McLarty, “Low contact resistivity ohmic contacts to 6H-silicon carbide”, Int. Electron Devices and Materials, 93, pp. 691, 1993.
    31. M. M. Anikin, M. G. Rastegaeva, A. L. Syrkin, I. V. Chuiko, “Amorphous and crystalline silicon caride II”, Springer proceedings in physics 56, pp.183, 1992.
    32. J. B. Petit, P. G. Neudeck, C. S. Salupo, D. J. Larkin, J. A. Powell: Institute of Physics Conference Series 137, pp.679, 1993.
    33. T. Uemoto, “Reduction of ohmic contact resistance on n-type 6H-SiC by heavy doping”, Jpn. J. Appl. Phys. 34, pp. L7, 1995.
    34. R. C. Glass, L. M. Spellman, R. F. Davis: Appl. Phys. Lett. 59, pp. 2868, 1991.
    35. S.-K. Lee, C.-M. Zetterling, and M. stling: J. Appl. Phys. 92, pp. 253, 2002.
    36. S.-K. Lee, C.-M. Zetterling, M. stling, J.-P. Palmquist, H. Hgberg, U. Jansson: Solid-State Electron. 44, pp.1179, 2000.
    37. T. Jang, L. M. Porter, G. W. M. Rutsch, and B. Odekirk: Appl. Phys. Lett. 75, pp. 3956, 1999.
    38. Nam-Ihn Cho, Kyung-Hwa Jung and Yong Choi: Semiconductor Science Technology 19, pp. 306, 2004.
    39. N. A. Papanicolaou, W. T. Anderson, A. Edwards and M. V. Rao, “Si/Pt Ohmic contacts to p-type 4H-SiC”, Appl. Phys. Lett. 73, pp. 2009, 1998.
    40. S.-K. Lee, C.-M. Zetterling, E. Danielsson, M. O¨ stling, J.-P. Palmquist, H. Ho¨gberg, and U. Jansson, Appl. Phys. Lett. 77, pp. 1478, 2000.
    41. R. Getto, J. Freytag, M. Kopnarski, and H. Oechsner, Materials Science and Engineering, B61–62, pp. 270, 1999.
    42. R. Kakanakov, L. Kassamakova, I. Kassamakov, K. Zekentes, N. Kuznetsov, Materials Science and Engineering, B80, pp. 374, 2001.
    43. A. A. Iliadis, S. N. Andronescu, K. Edinger, J. H. Orloff, R. D. Vispute, V. Talyansky, R. P. Sharma, T. Venkatesan, M. C. Wood and K. A. Jones, Appl. Phys. Lett. 73, pp. 3545, 1998.
    44. L. Kassamakova, R Kakanakov, N. Nordell, S. Savage,A. Kakanakova-Georgieva, Ts. Marinova, Materials Science and Engineering, B61-62, pp. 291, 1999.
    45. L. Kassamakova, R. D. Kakanakov, I. V. Kassamakov, N. Nordell, S. Savage, B. Hjrvarssn, E. B. Svedberg, L. Abom, and L. D. Madsen, IEEE trans. Electron Devices 46, pp. 605, 1999.
    46. J. S. Foresi and T. D. Moustakas, “Metal contacts to gallium nitride” Appl. Phys. Lett. vol. 62, pp. 2859, 1993.
    47. M. E. Lin, Z. Ma, F. Y. Huang, Z. Fan, L. H. Allen, and H. Morkoc, “Low resistance ohmic contacts on wide band-gap GaN”, Appl. Phys.Lett. vol. 64, pp. 1003, 1994.
    48. S. Miller and P. H. Holloway, J. Electon. Matls, 25, 1709 (1996).
    49. Roland Wenzel, Gerhard G. Fischer, Rainer Schmid-Fetzer, “Ohmic contacts on p-GaN (Part I): investigation of different contact metals and their thermal treatment”, Mat. Sci. Semi. Proc., pp. 1, 2000.
    50. N. A. Papanicolaou, M. V. Rao, J. Mittereder, and W. T. Anderson, “Reliable Ti/Al and Ti/Al/Ni/Au ohmic contacts to n-type GaN formed by vacuum annealing”, J. Vac. Sci. Technol. B, vol. 19, pp. 261, 2001.
    51. N. A. Papanicolaou, A. Edwards, M. V. Rao, A. E. Wickenden, D. D. Koleske, R. L. Henry, and W. T. Anderson, “A high temperature vacuum annealing method for forming ohmic contacts to GaN and SiC”, 4th High Temp. Electron. Conf., HITEC., pp. 122, 1998.
    52. N. A. Papanicolaou, A. Edwards, M. V. Rao, J. Mittereder, and W. T. Anderson, “Cr/Al and Cr/Al/Ni/Au ohmic contacts to n-type GaN”, J. Appl. Phys., vol. 87, pp.380, 2000.
    53. Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Very low resistance multilayer ohmic contact to n-GaN”, Appl. Phys. Lett. vol. 68, pp. 1672, 1996.
    54. A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N.Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN”, J. Appl. Phys., vol. 93, pp. 1087, 2003.
    55. E. F. Chor, D. Zhang, H. Gong, G. L. Chen, and T. Y. F. Liew, “Electrical characterization and metallurgical analysis of Pd-containing multilayer contacts on GaN”, J. Appl. Phys., vol. 90, pp. 1242, 2001.
    56. Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Q. H. Yu, B. Shen, R. Zhang, Y. Shi, S. L. Gu, and Y. D. Zheng, “Ti/Al/Pt/Au and Al ohmic contacts on Si-substrated GaN”, Appl. Phys. Lett., vol. 79, pp. 218, 2001.
    57. C.-T. Lee and H.-W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN”, Appl. Phys. Lett., vol. 76, pp. 2364, 2000.
    58. V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida, “Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n-GaN”, J. Appl. Phys., vol. 92, pp. 1712, 2002.
    59. K. O. Schweitz, P. K. Wang, S. E. Mohney, and D. Gotthold, “V/Al/Pt/Au Ohmic contact to n-AlGaN/GaN heterostructures”, Appl. Phys. Lett., vol. 80, pp. 1954, 2002.
    60. J. Kriz, K. Gottfried, Th. Scholz, Ch. Kaufmann, T. GeBner, “Ohmic contacts to n-type polycrystalline SiC for high-temperature micromechanical applications”, Material Science and Engineering B46, pp. 180, 1997.
    61. G. S. Marlow and M. B. Das, Solid State Electron., 25 (2), pp. 91, 1982.
    62. S. S. Cohen and G. Sh. Gildenblat, Metal-semiconductor contacts and Devices, Ch. 4, Academic Press, Orlando, 1986.
    63. Silicon power device (SBD, SIT), Toshiba Corporation.
    64. S. K. Lee, C. M. Zetterling, M. stling, and I. berg, etc. “Reduction of the Schottky barrier height on silicon carbide using Au nano-particles”, Solid State Electron., 46, pp. 1433, 2002.
    65. A. Itoh, T. Kimoto and H. Matsunami, “Efficient Power Schottky Rectifiers of 4H-SiC”, proc. International Symposium on Power Semiconductor Device & ICs, Yokohama, 1995.
    66. Shui Jinn Wang and Jiann Tyng Tzeng, “The double-metal schottky power rectifier: an adjustable schottky barrier height low-power-loss diode”, International Conference on Solid State Device sand Materials, 1997.
    67. A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, “Ionization rates and critical fields in 4H silicon carbide”, Appl. Phys. Lett. 71, pp. 90, 1997.
    68. S. K. Lee, “Processing and characterization of silicon carbide (6H- and 4H-SiC) contacts for high power and high temperature device applications”, Ph.D dissertation, KTH, Royal Institute of Technology, 2002.
    69. B. J. Baliga etc., “Edge terminations for SiC high voltage Schottky rectifiers”, 5th ISPSD & ICs, pp. 89, 1993.
    70. R. Raghunathan, B. J. Baliga,” EBIC investigation of edge termination techniques for silicon carbide power devices”, 8th ISPSD & ICs, pp. 111, 1996.
    71. A. J. Steckl etc., “High-voltage Ni- and Pt-SiC Schottky diodes utilizing metal field plate termination”, IEEE Trans. Electron Devices, 46, pp. 456, 1999.
    72. Y. Seki etc., “Al/Ti Schottky Barrier Diodes with the Guard-Ring Termination for 6H-SiC”, Proc. of 1995 ISPSD & ICs, pp. 107, 1995.
    73. W. Lynch etc., “Advanced Physical Model for the Optimisation of the Width of a Resistive Schottky Barrier Field Plate”, IEE Proc. Circuits Devices Syst., 145, pp. 260, 1998.
    74. B. J. Baliga etc., “Planar Edge Termination for 4H-Silicon Carbide Device”, IEEE Trans. Electron Devices, 43, pp.1315, 1996.
    75. K. J. Schoen etc., “Design Considerations and Experimental Analysis of High-Voltage SiC Schottky Barrier Rectifiers”, IEEE Trans. Electron Devices, 45, pp.1595, 1998.
    76. H. Matsunami etc., “Excellent Reverse Blocking Characteristics of High-Voltage 4H-SiC Schottky Rectifiers with Boron-Implanted Edge Termination”, IEEE Electron Device Lett., 17, pp.139, 1996.
    77. D. Alok and B. J. Baliga, “A Planar, Nearly Ideal, SiC Device Edge Termination”, Proc. of 1995 ISPSD & ICs, pp. 96, 1995.
    78. B. J. Baliga etc., “A Simple Edge Termination for Silicon Carbide Devices with Nearly Ideal Breakdown Voltage”, IEEE Electron Device Lett., 15, pp.394, 1994.
    79. D. Alok and B. J. Baliga, “SiC Device Edge Termination Using Finite Area Argon Implantation”, IEEE Trans. Electron Devices, 44, pp.1013, 1997.
    80. R. Singh and J. W. Palmour, “Planar Terminations In 4h-SiC Schottky Diodes With Low Leakage And High Yields”, IEEE ISPSD '97, pp. 157, 1997.
    81. Y. Seki etc., “The Guard-Ring Termination For the High-Voltage SiC Schottky Barrier Diodes”, IEEE Electron Device Lett., 16, pp.331, 1995.
    82. K. Ueno, T. Urushidani, K. Hashimoto, and Y. Seki, Inst. Phys. Conf. Ser. 142, pp. 693, 1996.
    83. G. Brezeanu, M. Badila, J. Millan', Ph. Godignon, Marie Laure Locatelli, J. P. Chante, etc, “A nearly ideal SiC Schottky barrier device edge termination”, Semiconductor Conference, CAS '99 Proceedings. , 1, pp.183, 1999.
    84. M. Bhatnagar, B. J. Baliga, H. R. Kirk, and G. A. Rozgonyi, “Effect of Surface Inhomogeneities on the Electrical Characteristics of SiC Schottky Contacts”, IEEE trans. Electron Devices, 43, pp. 150, 1996.
    85. J. Crofton and S. Sriram, “Reverse Leakage Current Calculations for SiC Schottky Contacts”, IEEE trans. Electron Devices, 43, pp.2305, 1996.
    86. K. J. Schoen, J. M. Woodall, J. A. Cooper, Jr., M. R. Melloch, “Design Considerations and Experimental Analysis of High-Voltage SiC Schottky Barrier Rectifiers”, IEEE trans. Electron Devices, 45, pp. 1595, 1998.
    87. N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a function of concentration and temperature,” IEEE trans. Electron Devices, ED-29, pp.292, 1982.
    88. Medici version 4.1 user’s manual, Avant! Corporation, TCAD Business Unit, 1998.
    89. W. J. Schaffer, G. H. Negley, K. G. Irvine, and J. W. Palmour, “Diamond, SiC and Nitride Wide-Bandgap Semiconductors”, Mat. Res. Soc. Symp. Proc., 339, pp.595, 1994.
    90. D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field”, Proc. IEEE, Vol. 55, pp. 2192, 1967.
    91. E. Danielsson, Ph. D Thesis, Department of Microelectronics and Information Technology, KTH, Royal Institute of Technology, Stockholm, 2001.
    92. G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, “A New Recombination Model for Device Simulation Including Tunneling,” IEEE Trans. Electron Devices, Vol. ED-39, pp. 331, Feb. 1992.
    93. A. Galeckas, J. Linnros, V. Grivickas, U. Lindefelf, and C. Hallin, “Auger recombination in 4H-SiC: Unusual temperature behavior”, Appl. Phys. Lett. vol. 71, pp. 3269, 1997.
    94. A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, “Ionization rates and critical fields in 4H silicon carbide”, Appl. Phys. Lett. vol. 71, pp. 90, 1997.
    95. E. O. Kane, “Zener Tunneling in Semiconductors”, J. Phys. Chem. Solids, Vol. 12, pp. 181, 1959.
    96. Cree corp. Silicon Carbide Product Specifications, 2001.
    97. Avanti TCAD business unit. TMA manual for MEDICI, version 4.1. 1998.
    98. Kolaklieva, L.; Kakanakov, R.; Lepoeva, G.; Gomes, J.B.; Marinova, T., “Au/Ti/Al contacts to SiC for power applications: electrical, chemical and thermal properties”, 24th International Conference on Microelectronics, pp. 16, 2004;.
    99. F. La Via , F. Roccaforte , A. Makhtari , V. Raineri , P. Musumeci, “Structural and electrical characterisation of titanium and nickel silicide contacts on silicon carbide”, Microelectronic Engineering, vol. 60, pp. 269, 2002.
    100. Sam Liu, James Scofield, “Thermally Stable Ohmic Contacts to 6H- and 4H- P-Type SiC”, HITEC, pp. 88, 1998.
    101. Wei Chih Peng and YewChung Sermon Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding”, Appl. Phys. Lett. vol. 84, pp. 1841, 2004.
    102. U. Zehnder, A. Weimar, U. Strauss, M. Fehrer, B. Hahn, H.-J. Lugauer, V. H.arle, “Industrial production of GaNand InGaN-light emitting diodes on SiC-substrates”, J. crystal growth, vol. 230, pp.497, 2001.
    103. L. Liu, J.H. Edgar, “Substrates for gallium nitride epitaxy”, Mat. Sci. and Eng., vol. 37, pp. 61, 2002.
    104. X. A. Cao, S. D. Arthur, “High power and reliable operation of vertical Light Emitting Diodes on Bulk GaN”, Appl. Phys. Lett. vol. 85, pp. 3971, 2005.
    105. A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi, and R.J. Molnar, “280nm UV LEDs grown on HVPE GaN substrate”, Opto-Eelcton. Rev., vol. 10, pp. 287, 2002.
    106. John T Torvik, M. Leksono, J. I. Pankove and B. Van Zeghbroeck, “A GaN/4H-SiC heterojunction bipolar transistor with operation up to 300°C”, MRS Internet J. Nitride Semicond. Res., vol. 4, pp. 1, 1999.
    107. W.S. Wong, T. Sands, N.W. Cheung, M. Kneissl, D.P. Bour, P. Mei, L.T. Romano, and N.M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off”, Appl. Phys. Lett., vol. 75, pp. 1360, 1999.
    108. W.S. Wong, T. Sands, N.W. Cheung, M. Kneissl, D.P. Bour, P. Mei, L.T. Romano, and N.M. Johnson, “InxGa1–xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off”, Appl. Phys. Lett., vol. 77, pp. 2822, 2000.
    109. J. Jasinski, Z. Liliental-Weber, S. Estrada, and E. Hu, “Microstructure of GaAs/GaN interfaces produced by direct wafer fusion”, Appl. Phys. Lett., vol. 81, pp. 3152, 2002.
    110. William S. Wong, Michael Kneissl, Ping Mei, David W. Treat, Mark Teepe, and Noble M. Johnson, “Fabrication of InGaN multiple-quantum-well laser diodes on copper substrates by laser lift-off”, IPAP conf. series 1, pp. 883, 2000.
    111. B. Tan, S. Yuan, and X. Kang, "Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate." Appl. Phys. Lett., vol. 84, pp. 2757, 2004.
    112. M. Braunovic, “Fretting in nickel-coated aluminum conductors”, Proceedings of the Thirty-Sixth IEEE Holm and the Fifteenth International Conference on Electrical Contacts, pp. 461, 1990.
    113. Claudio R. Miskys, Michael K. Kelly, Oliver Ambacher, and Martin Stutzmann, “Freestanding GaN-substrates and devices”, phys. stat. sol., vol. 6, pp. 1627, 2003.
    114. M.K. Kelly, R.P. Vaudo, V.M. Phanse, L. Grgens, O. Ambacher, and M. Stutzmann, “Large Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy and Laser-Induced Liftoff”, Jpn. J. Appl. Phys., vol. 38, pp. L217, 1999.
    115. D. C. Hays, K. P. Lee, B. P. Gila, F. Ren, C. R. Abernathy, and S. J. Pearton, “Dry etching selectivity of Gd2O3 to GaN and AlN”, J. Electron. Mat., vol. 29, pp. 285, 2000.
    116. Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, and J. M. Redwing, “Ni and Ni silicide Schottky contacts on n-GaN”, J. Appl. Phys., vol. 84, pp. 881, 1998.
    117. Lei Wang, M. I. Nathan, T-H. Lim, M. A. Khan and Q. Chen, “High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN”, Appl. Phys. Lett., vol. 68, pp. 1267, 1996.
    118. A. Castaldini, A. Cavallini, and L. Polenta, “Thickness-related features observed in GaN epitaxial layers”, Appl. Phys. Lett., vol. 84, pp. 4851, 2004.
    119. Y. Liu, M. Z. Kauser, M. I. Nathan, P. P. Ruden, S. Dogan, H. Morkoc, S. S. Park and K. Y. Lee, “Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN”, Appl. Phys. Lett., vol. 84, pp. 2112, 2004.
    120. Uwe Karrer1, Claudio R. Miskys, Oliver Ambacher and Martin Stutzmann, “Free standing Pt/GaN Schottky diodes”, Walter Schottky Institute, Research Annual Report, 2000.
    121. Y. Gao, T. Fuji, R. Sharma, K. Fujito, Steven P. Denbaars, S. Nakamura, and E. L. Hu., “Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching”, Jpn. J. Appl. Phys., vol. 43, pp. L637, 2004.

    下載圖示 校內:2006-10-13公開
    校外:2006-10-13公開
    QR CODE