簡易檢索 / 詳目顯示

研究生: 陳貞融
Chen, Chen-Jung
論文名稱: 高演色性PiG型白光發光二極體之開發: 紅色Li2MgTiO4:Mn4+螢光粉及碲玻璃:Eu3+、Sm3+之製備
Development of PiG -Type WLEDs with High CRI: Preparation of Red Phosphor Li2MgTiO4:Mn4+ and TeO2 Glass: Eu3+, Sm3+
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 71
中文關鍵詞: 紅色螢光粉稀土離子低溫熔點碲玻璃白光LED
外文關鍵詞: red phosphor, rare earth ions, low melting TeO2-based glass, WLED
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對兩種改善白光LED (blue chip+ YAG: Ce3+)之演色性(CRI)及相關色溫(CCT) 的方式進行探討,將白光LED調整至人眼可接受及舒適的範圍。第一種方法首先製備紅色螢光粉Li2MgTiO4:Mn4+結合助熔劑MgF2使整體分散性佳且粒子大小分布呈現均一。我們發現加入助熔劑MgF2可提升紅色螢光粉Li2MgTiO4:Mn4+的發光強度及熱穩定性由於助熔劑可以幫助粒子減少團聚及讓粒子大小一致,使其在燒結過程中能讓粉體更加緻密得到結晶性較佳的螢光粉。除此之外,外部量子效率也從9%提高至17%,之後利用熔融淬火法合成低熔點玻璃(TeO2-B2O3-ZnO-Na2CO3-WO3)。將紅色螢光粉及商用黃色螢光粉加入玻璃進行封裝並結合波長468nm的藍光晶片形成PiG型白光LED。紅色螢光粉的添加使得白光LED的演色性從74.97提高至82.50,而相關色溫從6285K降低至5487K。
    第二種方法,將發橘紅光的稀土元素Eu3+及Sm3+共摻入碲玻璃(TeO2-based)中,並結合黃色螢光粉及波長465nm的藍光晶片形成白光LED。可發現將稀土離子摻入玻璃中可提升白光LED的演色性從74.97增加至78.33,且降低相關色溫從5623K減少至5113K。最終,我們會針對兩種PiG形式的變電流與熱穩定性進行比較。

    In this thesis, two ways of improving color rendering index (CRI) and correlated color temperature (CCT) of WLED (blue chip+ YAG: Ce3+) adjust to the comfortable range to human eyes are investigated. First, well-dispersed red phosphors Li2MgTiO4:Mn4+ combined with the flux MgF2 are first prepared and shown good size distribution uniformity. The flux MgF2 is found to promote emission intensity and thermal stability of the proposed phosphors, besides the external quantum efficiency of the phosphors increases from 9% to 17%. Then, TeO2-B2O3-ZnO-Na2CO3-WO3 glass with low melting point is synthesized by melt-quenching method and PiG-based WLEDs are fabricated by encapsulating the proposed red phosphors, commercial YAG phosphors and glass with 468nm blue chips. The addition of red phosphors caused the CRI of WLED increasing from 74.97 to 82.50; in addition, the CCT of WLED is decreasing from 6285K to 5487K. On the other hand, TeO2-based glass: Eu3+, Sm3+ which emits orange-red are prepared and combined with yellow phosphor YAG: Ce3+ and 465nm blue chips to fabricate WLEDs. It is found that mixing rare earth ions into glass helps to increase the CRI of WLED from 74.97 to 78.33 and lower the CCT of WLED from 5623K to 5113K. Finally, the current-dependent and thermal stability of these two devices are compared.

    Table of contents Abstract I 中文摘要 II 致謝 III Table of contents IV List of Tables VII List of Figures VIII Chapter 1: Introduction 1 1.1 Background 1 1.2 Motivation 1 1.2.1 Improvement of CRI 1 1.2.2 Promotion of encapsulant 3 Chapter 2: Theory and Literature Review 5 2.1 Introduction to luminescence [18-20] 5 2.1.1 Excitation 5 2.1.2 Emission 6 2.1.2.1 Emission processing 6 2.1.2.2 Stokes shift 7 2.1.2.3 Concentration quenching 8 2.1.3 Nonradiative transitions 9 2.1.3.1 Multiphonon emission 9 2.1.3.2 Energy transfer 10 2.2 Luminescent centers [18-21] 11 2.2.1 Transition metal ions 11 2.2.2 Rare earth ions 12 2.3 Theory of glass [22-23] 13 2.3.1 Glass transformation behavior 14 2.3.2 Glass melting 15 2.3.3 Network connectivity 16 2.3.4 Optical property 17 2.3.4.1 Refractive index 17 2.3.4.2 Molar and ionic refractivity 18 2.4 Literature review of phosphor and glass encapsulant 19 2.4.1 Overview of Li2MgTiO4:Mn4+ phosphor 19 2.4.2 Overview of rare earth ions doped glass 21 2.4.3 Overview of phosphor in glass (PiG) 24 Chapter 3: Experimental Procedure 25 3.1 Introduction 25 3.2 The proposed red phosphors with low melting point TeO2 glass of PiG-based WLEDs 25 3.2.1 Synthesis of red-emitting phosphor Li2MgTiO4:Mn4+ with flux MgF2 25 3.2.2 Preparation of TeO2-based glass 26 3.2.3 Fabrication of phosphor in glass (PiG) of WLED 27 3.3 TeO2-based glass: Eu3+, Sm3+ of PiG-based WLEDs 28 3.3.1 Preparation of TeO2-based glass doping Eu3+, Sm3+ 28 3.3.2 PiG-based with rare earth ions Eu3+/Sm3+ of WLED 29 3.4 Instrumental analysis of characterization 30 3.4.1 X-ray diffraction (XRD) 30 3.4.2 Scanning electron microscopy (SEM) 30 3.4.3 Photoluminescence spectra, thermal stability and quantum efficiency 31 3.4.4 UV-VIS spectra 31 3.4.5 Decay time 31 3.4.6 Color rendering index (CRI), correlated color temperature (CCT) and luminous efficiency of WLED 31 Chapter 4: Results and Discussion 32 4.1 Red-emitting phosphor Li2MgTi(1-x)O4:xMn4+ 32 4.1.1 XRD analysis of Li2MgTi(1-x)O4:xMn4+ 32 4.1.2 Photoluminescence spectra of Li2MgTi(1-x)O4:xMn4+ 33 4.2 Effect of flux MgF2 addition on photoluminescence characteristic of Li2MgTi0.997O4:0.003Mn4+ 35 4.2.1 XRD analysis of flux MgF2 addition to Li2MgTi0.997O4:0.003Mn4+ 35 4.2.2 Photoluminescence spectra of MgF2 addition to Li2MgTi0.997O4:0.003Mn4+ 37 4.2.3 Thermal stability of Li2MgTi0.997O4:0.003Mn4+ with MgF2 and without MgF2 38 4.2.4 SEM observation of Li2MgTi0.997O4:0.003Mn4+ with MgF2 and without MgF2 40 4.2.5 Decay time of Li2MgTi0.997O4:0.003Mn4+ with MgF2 and without MgF2 41 4.3 Rare earth ions Eu3+ doped TeO2-based glass 42 4.3.1 XRD analysis of Eu3+ doped TeO2-based glass 42 4.3.2 Photoluminescence spectra of Eu3+ doped TeO2-based glass 43 4.3.3 Transmittance of Eu3+ doped TeO2-based glass 44 4.3.4 Decay time of Eu3+ doped TeO2-based glass 45 4.4 Rare earth ions Eu3+/Sm3+ co-doped TeO2-based glass 47 4.4.1 XRD analysis of Eu3+/Sm3+ co-doped TeO2-based glass 47 4.4.2 Photoluminescence spectra of Eu3+/Sm3+ co-doped TeO2-based glass 48 4.4.3 Transmittance of Eu3+/Sm3+ co-doped TeO2-based glass 50 4.4.4 Decay time of Eu3+/Sm3+ co-doped TeO2-based glass 51 4.5 White light-emitting diodes fabrication by using PiG disk with InGaN chip emitting blue light 53 4.5.1 Weight ratio of Pure YAG: Ce3+ and glass 53 4.5.2 PiG-based white light-emitting diode composed of Li2MgTi0.997O4:0.003Mn4+ and YAG 54 4.5.2.1 WLED characteristics of Li2MgTi0.997O4:0.003Mn4+ and YAG of PiG 54 4.5.2.2 XRD pattern of Li2MgTi0.997O4:0.003Mn4+ and YAG of PiG 55 4.5.2.3 Photoluminescence spectra of Li2MgTi0.997O4:0.003Mn4+ and YAG of PiG 56 4.5.3 PiG-based white light-emitting diodes composed of Eu3+/Sm3+doped glass and YAG 57 4.5.3.1 WLED characteristics of rare earth ions Eu3+/ Sm3+ and YAG of PiG 57 4.5.3.2 XRD pattern of rare earth ions Eu3+/ Sm3+ and YAG of PiG 58 4.5.3.3 Photoluminescence spectra of rare earth ions Eu3+/ Sm3+ and YAG of PiG 59 4.5.4 WLED characteristics stability of LMTPiG3 and ESPiG2 by changing current 60 4.5.5 Thermal stability of LMTPiG3 and ESPiG2 62 Chapter 5: Conclusions and Future Work 64 5.1 Conclusions 64 5.2 Future Work 65 References 66

    References
    [1] M. S. Jang, Y. H. Choi, S. Wu, T. G. Lim and J. S. Yoo, “Material properties of the Ce3+-doped garnet phosphor for a white LED application,” Journal of Information Display, 17(3), 117-123(2016)
    [2] C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang and W. W. Yu, “Efficient and Stable White LEDs with Silica‐Coated Inorganic Perovskite Quantum Dots,” Advanced Materials, 28(45), 10088-10094 (2016)
    [3] E. Jang, S. Jun, H. Jang, J. Lim, B. Kim and Y. Kim, “White‐light‐emitting diodes with quantum dot color converters for display backlights,” Advanced materials, 22(28), 3076-3080(2010)
    [4] H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.S. Liu and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature communications, 5, 4312(2014)
    [5] Y. Li, S. Qi, P. Li and Z. Wang, “Research progress of Mn doped phosphors,” RSC Advances, 7(61), 38318-38334 (2017)
    [6] M. A. K. Elfayoumi, M. Farouk, M. G. Brik and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” Journal of Alloys and Compounds, 492(1-2), 712-716(2010)
    [7] A. Langar, C. Bouzidi, H. Elhouichet, B. Gelloz and M. Ferid, “Investigation of spectroscopic properties of Sm-Eu codoped phosphate glasses,” Displays, 48, 61-67(2017)
    [8] D. Chen, Y. Zhou and J. Zhong, “A review on Mn4+ activators in solids for warm white light-emitting diodes,” RSC Advances, 6(89), 86285-86296(2016)
    [9] M. M. Medić, M. G. Brik, G. Dražić, Z. M. Antić, V. M. Lojpur and M. D. Dramićanin, “Deep-red emitting Mn4+ doped Mg2TiO4 nanoparticles,” The Journal of Physical Chemistry C, 119(1), 724-730(2014)
    [10] B. Wang, H. Lin, F. Huang, J. Xu, H. Chen, Z. Lin and Y. Wang, “Non-Rare-Earth BaMgAl10–2xO17:xMn4+,xMg2+:A Narrow-Band Red Phosphor for Use as a High-Power Warm w-LED,” Chemistry of Materials, 28(10), 3515-3524(2016)
    [11] T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga and T. Hase, “Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED,” Journal of Luminescence, 114(3-4), 207-212(2005)
    [12] H. F. Sijbom, J. J. Joos, L. I. Martin, V. K. Eeckhout, D. Poelman and P. F. Smet, “Luminescent behavior of the K2SiF6: Mn4+ red phosphor at high fluxes and at the microscopic level,” ECS Journal of Solid State Science and Technology, 5(1), R3040-R3048 (2016)
    [13] Y. Jin, Y. Hu, H. Wu, H. Duan, L. Chen, Y. Fu, G. Ju, Z. Mu and M. He, “A deep red phosphor Li2MgTiO4: Mn4+ exhibiting abnormal emission: Potential application as color converter for warm w-LEDs,” Chemical Engineering Journal, 288, 596-607(2016)
    [14] J. Zhong, D. Chen, Y. Zhou, Z. Wan, M. Ding and Z. Ji, “Stable and chromaticity-tunable phosphor-in-glass inorganic color converter for high-power warm white light-emitting diode,” Journal of the European Ceramic Society, 36(7), 1705-1713(2016)
    [15] Z. Lin, H. Lin, J. Xu, F. Huang, H. Chen, B. Wang and Y. Wang, “A chromaticity-tunable garnet-based phosphor-in-glass color converter applicable in w-LED,” Journal of the European Ceramic Society, 36(7), 1723-1729 (2016)
    [16] K. Han, S. H. Lee, Y. G. Choi, W. B. Im and W. J. Chung, “Improved color rendering index and thermal stability of white LEDs with phosphor-in-glass using the SiO2-B2O3-ZnO-Na2O glass system,” Journal of Non-Crystalline Solids,445, 77-80(2016)
    [17] R. Zhang, B. Wang, W. Zhu, C. Li and H. Wang, “Preparation and luminescent performances of transparent screen-printed Ce3+: Y3Al5O12 phosphors-in-glass thick films for remote white LEDs,” Journal of Alloys and Compounds,720, 340-344(2017)
    [18] R. J. Xie, Y. Q. Li, N. Hirosaki and H. Yamamoto, “Nitride phosphors and solid-state lighting,” CRC Press (2016)
    [19]詹亭軾,橘紅色鹵化鋁酸鹽類螢光粉之合成與高演色性白光發光二極體新型封裝技術探討及開發,成功大學電機工程學系學位論文,1-93(2016)
    [20] J. Solé, L. Bausa and D. Jaque, “An introduction to the optical spectroscopy of inorganic solids,” John Wiley & Son (2005)
    [21] 劉如熹,紀喨勝,紫外光發光二極體用螢光粉介紹,全華(2005)
    [22] M. W. Barsoum, “Fundamentals of ceramics,” CRC press (2002)
    [23] J. E. Shelby, “Introduction to glass science and technology,” Royal Society of Chemistry (2007)
    [24] G. G. Yao, X. S. Hu, X. L. Tian, P. Liu and J. P. Zhou, “Synthesis and microwave dielectric properties of Li2MgTiO4 ceramics,” Ceramics International, 41, S563-S566 (2015)
    [25] P. Wang, Y. R. Wang, J. X. Bi and H. T. Wu, “Effects of Zn2+ substitution on the crystal structure, Raman spectra, bond energy and microwave dielectric properties of Li2MgTiO4 ceramics,” Journal of Alloys and Compounds, 721, 143-148(2017)
    [26] C. H. Yang, C. F. Xing, L. Zhao, J. X. Bi and H. T. Wu, “Effect of Co-substitution on the sintering characteristics and microwave dielectric properties of Li2MgTiO4 ceramics,” Ceramics International, 44(6), 7286-7290 (2018)
    [27] M. Walas, T. Lewandowski, A. Synak, M. Łapiński, W. Sadowski and B. Kościelska, “Eu3+ doped tellurite glass ceramics containing SrF2 nanocrystals: Preparation, structure and luminescence properties,” Journal of alloys and compounds, 696, 619-626(2017)
    [28] W. Stambouli, H. Elhouichet, B. Gelloz and M. Férid, “Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics,” Journal of Luminescence, 138, 201-208 (2013)
    [29] I. I. Kindrat, B. V. Padlyak and A. Drzewiecki, “Luminescence properties of the Sm-doped borate glasses,” Journal of Luminescence, 166, 264-275(2015)
    [30] A. Tarafder, A. R. Molla, S. Mukhopadhyay and B. Karmakar, “Fabrication and enhanced photoluminescence properties of Sm3+-doped ZnO–Al2O3–B2O3–SiO2 glass derived willemite glass–ceramic nanocomposites,” Optical Materials, 36(9), 1463-1470 (2014)
    [31] H. A. Park, Y. K. Lee, W. B. Im, J. Heo and W. J. Chung, “Phosphor in glass with Eu3+ and Pr3+-doped silicate glasses for LED color conversion,” Optical Materials, 41, 67-70 (2015)
    [32] J. Deng, W. Li, H. Zhang, Y. Liu, B. Lei, H. Zhang, L. Liu, X. Bai, H. Luo, H. Liu, J. Wang and W. R. Liu, “Eu3+‐Doped Phosphor‐in‐Glass: A Route toward Tunable Multicolor Materials for Near‐UV High‐Power Warm‐White LEDs,” Advanced Optical Materials, 5(3), 1600910(2017)
    [33] Y. A. Tanko, S. K. Ghoshal and M. R. Sahar, “Ligand field and Judd-Ofelt intensity parameters of samarium doped tellurite glass,” Journal of Molecular Structure, 1117, 64-68(2016)
    [34] L. Q. Yao, G. H. Chen, T. Yang, Y. Luo and Y. Yang, “Optical properties and energy transfer in Tb3+/Sm3+ co-doped Na2O-CaO-P2O5-B2O3-ZrO2 glasses,” Journal of Alloys and Compounds, 692, 346-350 (2017)
    [35] Y. Peng, R. Li, H. Cheng, Z. Chen, H. Li and M. Chen, “Facile preparation of patterned phosphor-in-glass with excellent luminous properties through screen-printing for high-power white light-emitting diodes,” Journal of Alloys and Compounds, 693, 279-284(2017)
    [36] R. Zhang,, H. Lin, Y. Yu, D. Chen, J. Xu and Y. Wang, “A new‐generation color converter for high‐power white LED: transparent Ce3+: YAG phosphor‐in‐glass,” Laser & Photonics Reviews, 8(1), 158-164 (2014)
    [37] H. Lee, S. Kim, J. Heo and W. J. Chung, “Phosphor-in-glass with Nd-doped glass for a white LED with a wide color gamut,” Optics Letters, 43(4), 627-630 (2018)
    [38] L. Borkovska, L. Khomenkova, I. Markevich, M. Osipyonok, T. Stara, O. Gudymenko, V. Kladko, M. Baran, S. Lavoryk, X. Portier and T. Kryshtab, “Effect of Li+ co-doping on structural and luminescence properties of Mn4+ activated magnesium titanate films,” Journal of Materials Science: Materials in Electronics, 1-8 (2018)
    [39] Z. Feng, W. Zhuang, X. Huang, X. Wen and Y. Hu, “Effect of MgF2-H3BO3 flux on the properties of (Ce, Tb) MgAl11O19 phosphor,” Journal of Rare Earths, 28(3), 351-355 (2010)
    [40] Y. Bai, K. Jiang, S. Sun, Q. Wu, X. Lu and N. Wan, “Performance improvement of LiCoO2 by MgF2 surface modification and mechanism exploration,” Electrochimica Acta., 134, 347-354 (2014)
    [41] C. H. Chiang, BaZrSi3O9與Ca6BaP4O17螢光粉之合成與發光特性分析及其應用於近紫外激發白色發光二極體,成功大學電機工程學系學位論文,1-159 (2018)
    [42] M. Itoh, T. Sakurai, T. Yamakami and J. Fu, “Time-resolved luminescence study of CaF2: Eu2+ nanocrystals in glass-ceramics,” Journal of Luminescence, 112(1-4), 161-165(2005)
    [43] M. Secu, C. E. Secu, S. Polosan, G. Aldica and C. Ghica, “Crystallization and spectroscopic properties of Eu-doped CaF2 nanocrystals in transparent oxyfluoride glass-ceramics,” Journal of Non-Crystalline Solids, 355(37-42), 1869-1872 (2009)
    [44] M. A. K. Elfayoumi, M. Farouk, M. G. Brik and M. M. Elokr, “Spectroscopic studies of Sm3+ and Eu3+ co-doped lithium borate glass,” Journal of Alloys and Compounds, 492(1-2), 712-716(2010)
    [45] Z. Cui, R. Ye, D. Deng, Y. Hua, S. Zhao, G. Jia, C. Li and S. Xu, “Eu2+/Sm3+ ions co-doped white light luminescence SrSiO3 glass-ceramics phosphor for White LED,” Journal of Alloys and Compounds, 509(8), 3553-3558 (2011)
    [46] T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J.H. Jeong, S.S. Yi and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Optical Materials, 31(8), 1167-1172 (2009)
    [47] Y. X. Pan and G. K. Liu, “Enhancement of phosphor efficiency via composition modification” Optics Letters, 33(16), 1816-1818 (2008)

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE