簡易檢索 / 詳目顯示

研究生: 呂芳錩
Lu, Fang-Chang
論文名稱: 利用延伸型卡爾曼濾波器的混沌通訊 適應性盲蔽式通道等化
Adaptive Blind Equalization of Chaotic Communication Using Extended-Kalman Filter
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 56
中文關鍵詞: 延伸型卡爾曼濾波器盲蔽通道等化混沌通訊
外文關鍵詞: Chaotic Communication, Extended-Kalman Filter, Blind Equalization
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主旨在探討混沌通訊的適應性盲蔽式通道等化,提出了一種在接收端以使用延伸型卡爾曼濾波器為基礎的混沌通訊系統設計。首先,利用最佳線性化方法來找出混沌系統操作點的精確線性化模型,然後把多重路徑和時變的通道參數化成自回歸模型。盲蔽式通道等化可視為一種估測混合非線性參數和狀態的問題,從自回歸模型建立出一盲蔽式聯合通道與信號估測準則,然後使用延伸型卡爾曼濾波器來估測已加入訊號的系統參數與狀態。經由延伸型卡爾曼濾波器與最佳線性化模型的設計,可以在接收端將傳輸訊號完整地估測出來。由例題和模擬結果可顯示出本方法的效能。

      A blind-channel equalization for the extended-Kalman-filter-based chaotic communication is first proposed in this thesis. First, the optimal linearization technique is utilized to find the exact linear models of the chaotic system at operating states of interest. The proposed blind-channel equalization is formulated as a mixed nonlinear parameter and state estimation problem by an autoregressive (AR) model. The channel coefficients of a fading and multipath channel can be represented by an AR process. Then, an extended Kalman filter algorithm is utilized to reduce the effect of channel noise. By using the extended Kalman filter, the channel coefficients and the state of the system which is the signal before going through the channel can be estimated. The stability problem of the proposed blind-channel equalization is also addressed. Numerical examples and simulations are given to show the effectiveness and the speed of convergence for the proposed methodology.

    Chinese Abstract………………………………………………………………I Abstract…………………………………………………………………………II List of Figures……………………………………………………………… V List of Tables…………………………………………………………………VII Chapter 1 Introduction 1.1 Introduction…………………………………………………………1-1 1.2 Organization of the thesis………………………………………1-3 2 Adaptive Equalization for Chaotic Communication 2.1 Introduction.……………………………………………………… 2-2 2.2 Theoretical Analysis………………………………………………2-3 2.3 Formulation of Equalization Model…………………………… 2-4 2.4 Optimal Linearization…………………………………………… 2-8 2.5 EKF-Based Demodulation……………………………………………2-13 2.6 Stability Analysis…………………………………………………2-15 3 Performance Evaluation and Simulations 3.1 Computer Simulation of the EKF-Based Method……………………3-2 3.2 Application to Equalization of Chaotic Modulation Systems…3-4 4 Conclusions……………………………………………………………… 4-1 References Acknowledgments

    [1] H. Leung and T. Lo, “Chaotic radar signal processing over the sea,” IEEE J. Oceanic Eng., vol. 18, pp. 287-295, July 1993.
    [2] V. Petrov and K. Showalter, “Nonlinear control of dynamical systems from time series,” Phys. Rev. Lett., vol. 76, pp. 3312-3315, Apr. 1996.
    [3] J. M. H. Elmirghani, S. H. Milner, and R. A. Cryan, “Experimental evaluation of echo path modeling with chaotic coded speech,” IEEE Trans. Signal Processing, vol. 43, pp. 2600-2604, Oct. 1997.
    [4] M. J. Ogorzalek, “Taming chaos—Part I: Synchronization,” IEEE Trans. Circuits. Syst. I, vol. 40, pp. 693-699, Oct. 1993.
    [5] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchronization of Lorenz-based chaotic circuits with applications to communications,” IEEE Trans. Circuit Syst. I, vol. 40, pp. 626-633, Oct. 1993.
    [6] K. S.Halle, C. W. Wu, M. Itoh, and L. O. Chua, “Spread spectrum communications through modulation of chaos,” Int. J. Bifurcation Chaos, vol. 3, no. 2, pp. 469-477, 1993.
    [7] N. Sharma and E. Ott, “Combating channel distortions in communication with chaotic systems,” Phys. Lett. A, vol. 248, no. 5/6, pp. 347-352, 1998.
    [8] K. M. Cuomo, A. V. Oppenheim, R. J. Barron, “Channel equalization for self-synchronizing chaotic systems,” in Proc. ICASSP, vol. 3, pp. 1605-1608, 1996.
    [9] L. O. Chua, T. Yang, G. Q. Zhong, and C. W. Wu, “Synchronization of Chua’s circuits with time-varying channels and parameters,” IEEE Trans. Circuit. Syst. I, vol. 43, pp. 862-868, Oct. 1996.
    [10] H. Leung, “System identification using chaos with application to equalization of a chaotic modulation system,” IEEE Trans. Circuit. Syst. I, vol. 45, pp. 314-320, Mar. 1998.
    [11] T. B. Fowler, “Application of stochastic control techniques to chaotic nonlinear systems,” IEEE Trans. Automat. Contr., vol. 34, pp. 201-205, Feb. 1989.
    [12] C. Cruz and H. Nijmeijer, “Synchronization through filtering,” Int. J. bifurcation Chaos, vol. 10, no. 4, pp. 763-775,2000.
    [13] H. Leung and J. Lam, “Design of demodulator for the chaotic modulation communication system,” IEEE Trans. Circuit. Syst. I, vol. 44, pp. 262-267, Mar. 1997.
    [14] D. J. Sobiski and J. S. Thorp, “PDMA-1: Chaotic communication via the extended Kalman Filter,” IEEE Trans. Circuit. Syst. I, vol. 45, pp. 194-197, Feb. 1998.
    [15] Z. Zhu and H. Leung, “Adaptive blind equalization for chaotic communication systems using extended-kalman filter” IEEE Trans. Circuit Syst. I, vol. 48, pp. 979-989, 2001.
    [16] S. M. Guo, L. S. Shieh, G. Chen and C. F. Lin “Effective chaotic orbit tracker: a prediction-based digital redesign approach.” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, vol. 47, 1557-1570, 2000.
    [17] R. A. Iltis and A. W. Fuxjaeger, “A digital DS spread-spectrum receiver with joint channel and Doppler shift estimation,” IEEE Trans. Commun., vol. 39, pp. 1255-1267, Aug. 1991.
    [18] S. I. Howard and K. Pahlavan, “Autoregressive modeling of wide-band indoor radio propagation,” IEEE Trans. Commun., vol. 40, pp. 1540-1552, Sept. 1992.
    [19] J. B. Dabney and T. L. Harman, Mastering SIMULINK 2, New Jersey : Prentice-Hall, 1998.
    [20] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Trans. on Fuzzy Systems, vol. 7, pp133-142, 1999.
    [21] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. London, U.K.: Prentice-Hall, 1984.
    [22] H. Leung, Z. Zhu, and Z. Ding, “An aperiodic phenomenon of the extended kalman filter in filtering noisy chaotic signals,” IEEE Trans. Signal Processing, vol. 48, pp. 1807-1810, June 2000.
    [23] A. P. Liavas, P. A. Regalia, and J. P. Delmas, “Robustness of least-squares subspace methods for blind-channel identification/equalization with respect to effective channel undermodeling/overmodeling” IEEE Trans. Signal Processing, vol. 47, pp. 1636-1645, June 1999.
    [24] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen, “Stochastic stability of the discrete-time extended Kalman filter,” IEEE Trans. Autom. Contr., vol. 44, pp. 714-728, Apr. 1999.
    [25] J. M. H. Elmirghani and R. A. Cryan, “New chaotic based communication technique with multiuser provision,” Electron. Lett., vol. 30, no. July, pp. 1206-1207,1994.
    [26] G. Mazzini, G. Setti, and R. Rovatti, “Chaotic complex spreading sequences for asynchronous DS-CDMA,” IEEE Trans. Circuit. Syst. I, vol. 44, pp. 937-947, Oct. 1997.
    [27] M. P. Kennedy, “Determination of main system parameters of FM-DCSK telecommunications system,” in ISCAS, 2000, vol. IV, pp. 429-432, 2000.

    下載圖示 校內:2005-07-05公開
    校外:2006-07-05公開
    QR CODE