簡易檢索 / 詳目顯示

研究生: 江詩偉
Jiang, Shih-Wei
論文名稱: 根據線段建構之生成圖完成有效率避開障礙物時鐘樹合成演算法
Efficient Blockage-Avoiding Clock-Tree Synthesis Algorithm based on a Spanning Graph Constructed from segments
指導教授: 林家民
Lin, Jai-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 38
中文關鍵詞: 時鐘樹合成製程變異
外文關鍵詞: clock tree synthesis, process variation
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高效能的同步設計中,時鐘樹的合成是非常重要的步驟,隨著製程科技的進步,如何建立一個能夠適應製程變異的時鐘樹變得越來越重要。在2009 ISPD競賽中,主辦單位使用CLR這個值去判定一棵時鐘樹適應製程變異的能力。因此在這篇論文中,我們根據DME演算法去發展一個有效率的演算法來建立一棵時鐘樹並且考慮CLR。不同於傳統的方法在線段合併的步驟會建立一個完全圖(complete graph),我們根據線段的分佈情形去建立一個生成圖(spanning graph),如此一來可以成功且有效地減少圖形的連線,因此我們的方法執行時間比使用完全圖的方法還要快。除此之外,為了得到更準確的訊號變化率,我們在插入緩衝器的方法,則是採用考慮訊號變化率限制來取代傳統只考慮負載電容的技術。此外,為了達到最小化CLR的目的,我們會廣泛的使用較窄的線和較大的緩衝器。實驗結果顯示我們的演算法在執行時間上比使用完全圖的演算法來得快。

    Clock tree synthesis is a very important stage in high-performance synchronous design. As process technology advances, building a robust clock tree that can adapt process variation becomes more and more important. In ”2009 ACM ISPD Clock Network Synthesis Contest”, they propose to use clock latency range(CLR) for the judgement of robustness of a clock tree against process variation. Thus, in this thesis, we develop an efficient algorithm to build a clock tree that considers CLR based on the Deferred-Merge Embedding algorithm (DME). Unlike traditional methods which have to build a complete graph in segment merging phase, we propose to build a spanning graph according to the distribution of segments, which can significantly reduce number of edges. Thus, our algorithm can run much faster than the methods using a complete graph. Besides, for getting more accurate values of slews, we adopt slew-constrained buffering technique instead of using traditional buffering methods which can only consider capacitance loading. Moreover, in order to minimize the CLR, we widely used narrow wires and big buffers. The experimental results show that our algorithm achieves better results in terms of the CPU runtime compared the with method using a complete graph.

    Chinese Abstract i Abstract ii List of Tables v List of Figures vi Chapter 1. Introduction 1 1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2. Preliminaries 4 2.1 Slew Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Clock Latency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 3. Problem Formulation and Overview of Our Algorithm 8 3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Overview of Our Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 4. Construction of a Spanning Graph from Segments 11 4.1 Review of DME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Review of Zhou’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Our Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.4 Assignment of Edge Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 5. Merging Segments 18 5.1 Delay Balance and Buffer Insertion (DBBI) . . . . . . . . . . . . . . . . . . . . . 18 5.2 Longest Distance (LD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3 Construct Merging Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 6. Routing and Buffer Insertion 26 Chapter 7. Experimental Results 29 Chapter 8. Conclusion 35 Bibliography 36

    [1] Hai Zhou, Narendra V. Shenoy, and William Nicholls. “Efficient minimum spanning tree construction without delaunay triangulation,” In Proc. of ASP-DAC, 2001, pp. 192-197.
    [2] C. N. Sze, P. Restle, G. J. Nam, and C. Alpert, “ISPD2009 clock network synthesis contest,” In Proc. of ISPD, 2009, pp. 149-150.
    [3] Dhar, Franklin, and Wang, “Reduction of clock delays in VLSI structure” In Proc. Of ICCD, 1984, pp. 778-783.
    [4] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, “Clock routing for high-performanceICs,” In Proc. of DAC, 1990, pp. 573-579.
    [5] A. B. Kahng, J. Cong, and G. Robins, “High-performance clock routing based on recursive geometric matching,” In Proc. of DAC, 1991, pp. 322-327.
    [6] Cong, Kahng, Robins, “Matching based models for high-performance clock routing,” In Proc. of TCAD, 1993.
    [7] R. S. Tsay, “Exact zero skew,” In Proc. of ICCAD, 1991, pp. 336-339.
    [8] T. H. Chao, Y. C. Hsu, J.M. Ho, K. D. Boese, and A. B. Kahng, “Zero skew clock routing with minimum wirelength,” In Proc. of ASIC, 1992, pp. 799-814.
    [9] Y. P. Chen and D. F. Wong, “An algorithm for zero-skew clock tree routing with buffer insertion,” In Proc. of EDAC, 1996, pp. 230-236.
    [10] A. Vittal and M.Marek-Sadowska, “Power optimal buffered clock tree design,” In Proc.of DAC, 1996, pp. 497-502.
    [11] I. M. Liu, T. L. Chou, D. F. Wong, and A. Aziz, “Zero-skew clock tree construction by simultaneous routing, wire sizing and buffer insertion,” In Proc. of ISPD, 2000, pp. 33-38.
    [12] M. Edahiro, “A clustering-based optimization algorithm in zero-skew routings,” In Proc. of DAC, 1993, pp. 612- 616.
    [13] R. S. Shelar, “An efficient clustering algorithm for low power clock tree synthesis,” In Proc. of ISPD, 2007, pp. 181-188.
    [14] S. Lin and C. K.Wong, “Process-variation-tolerant clock skew minimization,” In Proc. of ICCAD, 1994, pp. 284-288.
    [15] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng, K. A. Jenkins, D. H. Allen,M. J. Rohn,M. P. Quaranta, D.W. Boerstler, C. J. Alpert, C. A. Carter, R. N. Bailey, J. G. Petrovick, B. L. Krauter, and B. D. McCredie, “A clock distribution network for microprocessors,” In Proc. of SSC, 2001, pp. 792-799.
    [16] A. D. Mehta, Y. P. Chen, N. Menezes, D. F. Wong, and L. T. Pileggi, “Clustering and loading balancing for buffered clock tree synthesis,” In Proc. of ICCAD, 1997, pp. 217-223.
    [17] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing clock skew variability via crosslinks,” In Proc. of DAC, 2004, pp.18-23.
    [18] X.W. Shih, C. C. Cheng, Y. K. Ho, and Y.W. Chang, “Blockage-avoiding buffered clock tree synthesis for clock latency-range and skew minimization,” In Proc. of ASP-DAC, 2010, pp. 395-400.
    [19] J. W. Lu, W. K. Chow, C. W. Sham, and F. Y. Young, “A dual-MST approach for clock network synthesis,” In Proc. of ASP-DAC, 2010, pp. 467-473.
    [20] W. H. Liu, Y. L. Li, and H. C. Chen, “Minimizing clock latency range in robust clock tree synthesis,” In Proc. of ASP-DAC, 2010, pp. 389-394.
    [21] D. Lee and I. L. Markov, “Contango: Integrated optimization of SoC clock network,” In Proc. of EDAC, 2010, pp. 1468- 1473.
    [22] S. Hu, C. J. Alpert, J. Hu, S. K. Karandikar, Z. Li,W. Shi, and C. N. Sze, “Fast algorithms for slew-constrained minimum cost buffering,” In Proc. of TCAD, 2007, pp. 2009-2022.
    [23] C. V. Kashyap, C. J. Alpert, F. Liu, and A. Devgan, “Closed form expressions for extending step delay and slew metrics to ramp inputs,” In Proc. of ISPD, 2003, pp. 24-31.
    [24] H. B. Bakoglu, Circuits, Interconnects, and Packaging for VLSI. Reading, MA: Addison- Wesley, 1990.
    [25] W. C. Elmore, “The transient response of damped linear networks with particular regard to wide-band amplifiers,” In Proc. of Applied Physics, 1948, pp. 55-63.
    [26] C. N. Sze, P. Restle, G. J. Nam, and C. Alpert, “ISPD2009 clock network synthesis contest,” In Proc. of ISPD, 2009, pp. 149-150.
    [27] S. Chou, C. S. Han, P. K. Huang, K. F. Tien, T. Y. Ho, “An Effective and Efficient Framework for Clock Latency Range Aware Clock Network Synthesis,” In Proc. of TCAD, 2011, pp. 1045-1057.
    [28] X. W. Shih, H. C. Leey, K. H. Ho, and Y. W. Chang, “High Variation-Tolerant Obstacle- Avoiding Clock Mesh Synthesis with Symmetrical Driving Trees,” In Proc. of ICCAD, 2010, pp. 452-457

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE