簡易檢索 / 詳目顯示

研究生: 郭柏辰
Kuo, Po-Chen
論文名稱: 開放量子系統理論的應用—從玻恩-馬可夫近似到分層運動方程
Applications of the Theory of Open Quantum Systems - from Born-Markov approximation to hierarchical equations of motion
指導教授: 陳岳男
Chen, Yueh-Nan
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 104
中文關鍵詞: 開放性量子系統玻恩-馬可夫近似量子點表面電漿子例外點近藤效應超強耦合分層運動方程
外文關鍵詞: open quantum systems, Born-Markov approximation, quantum dot, surface plasmon polariton, exceptional point, Kondo effect, ultra-strong coupling regime, hierarchical equations of motion
相關次數: 點閱:191下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在量子尺度下光與物質的相互作用,向來是研究者所關注的焦點,因其常具有反直覺的量子特性。對涉及光與物質交互作用的開放性量子系統研究,為探索量子力學的基礎提供了一個可行的研究平台。開放性量子系統理論儼然成為認識與深入探索量子現象的最有力工具之一。然而開放性量子系統問題的研究,通常奠基於玻恩-馬可夫近似,這個近似方法通常需要假設環境是很“大”的,從而使得環境可以影響量子系統但卻不受系統所影響。

    在本論文中,我們考慮玻恩-馬可夫近似的情況之下,選擇量子點來研究開放量子系統的動態行為,該量子點可以透過實驗設計形成二能階系統,進一步耦合到金屬奈米粒子。而光在金屬奈米粒子上所誘導出的表面電漿子,可以將光能轉化為電能,克服光的繞射極限,進而顯著增強局部的電場。利用電漿子的優勢,我們能更深入了解與表面電漿子耦合的量子點系統其動力學特徵。此外,表面電漿子耦合量子點系統的動力學,可以透過林德布拉德主方程所推導出的有效非厄密特哈密頓來描述。其中,非厄密系統所產生的例外點在提高量子感測器的靈敏度上深具潛力。透過量子電動力學的方法,我們藉由觀測表面電漿子耦合量子點系統實部和虛部的本徵能譜,可以得知在何種表面電漿子耦合的強度下,能使得該系統產生我們想觀測到的例外點。我們也比較了單一量子點和數個量子點耦合到表面電漿子對系統例外點的影響,進一步發現,相較於單一個量子點,多個量子點同時耦合到表面電漿子的集體效應所產生的例外點,在集體效應的幫助下,其產生條件不僅不需要像單一量子點所需和表面電漿子如此大的耦合強度,而且根據訊噪比的分析,我們發現其例外點較為穩定而且更容易被量子點的光譜所偵測到。

    此外,為了研究有別於上述之弱交互作用的系統,我們進一步屏除了玻恩-馬可夫近似,以研究強相關的量子系統,亦即和環境強相互作用的系統。我們考慮量子點和電極強耦合的系統,這種量子點-電極強耦合系統可以表現出多體效應,即近藤效應-由於量子點內的電子和其周圍的電子產生多體的量子糾纏所引起。近藤效應的有效調控被視為是未來自旋電子器件的關鍵技術之一,因此,我們提出了一種將量子點進一步超強耦合到共振腔的方法,藉由共振腔引起的電子光子交互作用來控制整個系統的近藤效應。

    然而在理論計算上,量子系統的近藤效應是無法以玻恩-馬可夫近似的主方程來模擬的。因此我們採用分層運動方程 (HEOM),即一種數值精確的方法,除了可以刻畫量子點態密度中出現的近藤共振現象,也可以適用於任何複雜的量子點系統,如本研究中所考慮的量子點-共振腔耦合系統。在這個基礎上,我們運用分層運動方程所數值模擬出來之量子點態密度結果,來定性分析該量子點-共振腔耦合系統的近藤效應,如何受電子和超強光子相互作用所影響。我們先計算單能階量子點耦合共振腔系統的量子點態密度的結果,來討論分層運動方程在不同參數下的收斂程度,給出了可行的參數範圍。此外,我們也考慮二能階的量子點耦合到共振腔的系統,歸納出量子點與共振腔的耦合可以分為兩種形式,即縱向耦合和橫向耦合。從量子點態密度的結果中我們發現,共振腔對量子點的超強縱向耦合會使兩邊的Hubbard peaks同時往低頻的方向平移。而當我們將量子點與共振腔的耦合模式從超強縱向耦合調整至超強橫向耦合,我們發現到共振腔的耦合可以顯著抑制近藤共振。這種近藤效應的抑制可以從量子點態密度譜中得知,由位於費米能量周圍的電子被激發參與電子-光子裹態的形成,進而部分破壞由量子點和環境電子所組成的多體單重態。

    Research on light-matter interaction has always received great attention due to its counter-intuitive quantum properties. The investigation of open quantum systems involving light-matter interaction provides a viable platform for exploring the fundamentals of quantum mechanics. In most cases, the study of the open system problem is based on the Born-Markov approximation, for which the coupling environment is assumed to be "large", so that it can affect the quantum system but is unaffected by the system.

    With the help of the Born-Markov approximation, we investigate the dynamics of an open quantum system: the point-like quantum dots (QDs), which can be properly designed to serve as a two-level system coupled to the plasmonic nanoparticle. The surface plasmon induced by the light on the metal nanoparticle can convert light energy into electrical energy, overcoming the diffraction limit of light, and enhancing the local electric field in the near-field. Taking advantage of the above features, the controlled dynamics of QDs strongly coupled to surface plasmon polariton (SPP) can be characterized by effective non-Hermitian Hamiltonians in the frame of the Lindblad master equation. The quantum exceptional points of non-Hermitian Hamiltonian enable such an SPP–QD system to become a promising candidate for quantum sensing. By using an analytical quantum electrodynamics approach, exceptional points are manifested as a result of a strong-coupling effect and observable in a drastic splitting of originally coalescent eigenenergies. We show that exceptional points can also occur when several quantum emitters are collectively coupled to the dipole mode of localized surface plasmons. Such a quantum collective effect not only relaxes the strong-coupling requirement for an individual QD, but also results in a more stable generation of the exceptional points. Furthermore, we point out that the exceptional points can be explicitly revealed in the power spectra. A generalized signal-to-noise ratio, accounting for both the frequency splitting in the power spectrum and the system's dissipation, evidently shows that a collection of quantum emitters coupled to a nanoparticle provides better performance of detecting exceptional points, compared to that of a single quantum emitter.

    Moreover, we also go beyond the Markov approximation in order to study strongly correlated quantum systems, such as the QD strongly coupled to leads. This quantum dot-lead hybrid system can exhibit the many-body effect, namely, the Kondo effect, caused by the entanglement between the electrons in leads and QD due to the strong system-bath coupling. The manipulation of the Kondo effect is one of the critical abilities for the development of future spintronic devices. We propose an alternative way to control the Kondo effect by using the additional electron-photon interactions between a single-mode cavity and QD.

    The Kondo effect cannot be simulated under the Markovian quantum master equation. As the dot-lead interactions cannot be treated perturbatively, we employ the hierarchical equations of motion (HEOM) approach, i.e., one of the numerically exact methods, not only because it can capture the Kondo resonance emerging in the density of states of the QD, but for the reason that it can apply to any complex QD system with only slight derivation effort. Within the HEOM scheme, we provide a qualitative description of how the Kondo effect is affected by electron-photon interaction in the ultra-strong coupling regime. The degree of convergence in the results of DOSs, obtained by HEOM, have been discussed. Due to the controllability of the different types of cavity coupling, i.e., ultra-strong longitudinal or transverse coupling in the QD-cavity system, we show that when the QD is tuned from single-level to two-level, longitudinal electron-photon interaction in the ultrastrong coupling regime results in the shift of both Hubbard bands in analogy to the case of single-level QD. In addition, the Kondo resonance is noticeably suppressed by changing the longitudinal type to the transverse type of ultrastrong coupling to the cavity. The suppression of the Kondo resonance is caused by the formation of the electron-photon dressed states, which require the electrons around the Fermi energy to participate, thereby partially destructing the many-body singlet states.

    Contents I List of Figures III List of my Publications VI 1 Introduction 1 1.1 Background 1 1.2 Motivation 3 1.3 Thesis overview 5 2 Essential knowledge and tools 7 2.1 The Born-Markov master equation approach 7 2.2 Open quantum system coupled to hybrid environments: the hierarchical equations of motion approach 11 3 Collectively induced exceptional points of quantum dots coupled to nanoparticle surface plasmons under Born-Markov approximation 16 3.1 Exceptional points in the open quantum system 16 3.2 Single quantum dot coupled to the nanoparticle surface plasmons 18 3.2.1 Detecting an exceptional point with the power spectrum 23 3.3 Exceptional points induced by collective coupling of quantum dots to nanoparticle surface plasmons 26 3.3.1 Detecting the exceptional points of the numerous quantum dots case 27 4 Beyond the Born-Markov approximation: Kondo effects in quantum dots ultrastrongly coupled to cavity photons 34 4.1 Kondo effect 34 4.1.1 A brief overview of the history 34 4.1.2 Mechanism of the Kondo effect 35 4.2 Probing the Kondo effect in various systems 36 4.3 The density of states derived from the method of hierarchical equations of motion 38 4.3.1 The Hamiltonian 38 4.3.2 The density of states 40 4.4 The results 52 4.4.1 A single-level quantum dot ultrastrongly coupled to a cavity in Kondo regime 52 4.4.2 A two-level quantum dot ultrastrongly coupled to a cavity in Kondo regime 65 5 Conclusion 84 6 Appendices 86 6.1 The derivation of influence functional 86 6.2 The Pade’s decomposition of correlation function 90 Bibliography 93

    [1] Kuo, P. C., Chen, G. Y. & Chen, Y. N. Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Sci. Rep. 6, 37766 (2016).
    [2] Kuo, P. C. et al. Collectively induced exceptional points of quantum emitters coupled to nanoparticle surface plasmons. Phys. Rev. A 101, 013814 (2020).
    [3] Chen, G. T., Kuo, P. C., Ku, H. Y., Chen, G. Y. & Chen, Y. N. Probing higher-order transitions through scattering of microwave photons in the ultrastrong coupling regime of circuit QED. Phys. Rev. A 98, 043803 (2018).
    [4] Ku, H. Y. et al. Hidden nonmacrorealism: Reviving the Leggett-Garg inequality with stochastic operations. Phys. Rev. Research 3, 043083 (2021).
    [5] Cirio, M., Kuo, P. C., Chen, Y. N., Nori, F. & Lambert, N. Canonical derivation of the fermionic influence superoperator. Phys. Rev. B 105, 035121 (2022).
    [6] Schr¨odinger, E. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926).
    [7] Zwanzig, R. Ensemble method in the theory of irreversibility. The Journal of Chemical Physics 33, 1338–1341 (1960).
    [8] Van Kampen, N. Chapter iv - Markov processes. In Stochastic Processes in Physics and Chemistry (Third Edition), North-Holland Personal Library, 73–95 (Elsevier, Amsterdam, 2007), third edition edn.
    [9] Kraus, K. General state changes in quantum theory. Annals of Physics 64, 311–335 (1971).
    [10] Van Kampen, N. Chapter v - the master equation. In Stochastic Processes in Physics and Chemistry (Third Edition), North-Holland Personal Library, 96–133 (Elsevier, Amsterdam, 2007), third edition edn.
    [11] John, W. & Sons, L. Radiation Considered as a Reservoir: Master Equation for the Particles, chap. 4, 257–351 (1998).
    [12] Agarwal, G. I. master equation methods in quantum optics. vol. 11 of Progress in Optics, 1–76 (Elsevier, 1973).
    [13] Carlesso, M. & Bassi, A. Adjoint master equation for quantum Brownian
    motion. Phys. Rev. A 95, 052119 (2017).
    [14] Swain, S. Master equation derivation of quantum regression theorem. Journal of Physics A: Mathematical and General 14, 2577–2580 (1981).
    [15] Cosacchi, M. et al. Accuracy of the quantum regression theorem for photon emission from a quantum dot. Phys. Rev. Lett. 127, 100402 (2021).
    [16] Caldeira, A. O. & Leggett, A. J. Path integral approach to quantum Brownian motion. Physica A: Statistical Mechanics and its Applications 121, 587–616 (1983).
    [17] Weiss, U. Quantum Dissipative Systems (World Scientific, 2021), 5th edn.
    [18] Feynman, R. & Vernon, F. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics 24, 118–173 (1963).
    [19] Luo, H. G., Ying, J. J. & Wang, S. J. Equation of motion approach to the solution of the Anderson model. Phys. Rev. B 59, 9710–9713 (1999).
    [20] Ciuchi, S., de Pasquale, F., Fratini, S. & Feinberg, D. Dynamical mean-field theory of the small polaron. Phys. Rev. B 56, 4494–4512 (1997).
    [21] Chin, A. W., Rivas, A., Huelga, S. F. & Plenio, M. B. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. Journal of Mathematical Physics 51, 092109 (2010).
    [22] Kornilovitch, P. E. Continuous-time quantum monte carlo algorithm for the lattice polaron. Phys. Rev. Lett. 81, 5382–5385 (1998).
    [23] Wang, H. Basis set approach to the quantum dissipative dynamics: Application of the multiconfiguration time-dependent Hartree method to the spin boson problem. The Journal of Chemical Physics 113, 9948–9956 (2000).
    [24] Tanimura, Y. & Mukamel, S. Multistate quantum Fokker–Planck approach to
    nonadiabatic wave packet dynamics in pump–probe spectroscopy. The Journal of Chemical Physics 101, 3049–3061 (1994).
    [25] Xie, W., Xu, Y., Zhu, L. & Shi, Q. Mixed quantum classical calculation of proton transfer reaction rates: From deep tunneling to over the barrier regimes. The Journal of Chemical Physics 140, 174105 (2014).
    [26] Kurth, S., Stefanucci, G., Khosravi, E., Verdozzi, C. & Gross, E. K. U. Dynamical coulomb blockade and the derivative discontinuity of time-dependent density functional theory. Phys. Rev. Lett. 104, 236801 (2010).
    [27] Bulla, R., Costi, T. A. & Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395–450 (2008).
    [28] Dorda, A., Ganahl, M., Evertz, H. G., von der Linden, W. & Arrigoni, E. Auxiliary master equation approach within matrix product states: Spectral properties of the nonequilibrium anderson impurity model. Phys. Rev. B 92, 125145 (2015).
    [29] Lambert, N., Raheja, T., Ahmed, S., Pitchford, A. & Nori, F. Bofin-heom: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics (2020). 2010.10806.
    [30] Tanimura, Y. Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (heom). The Journal of Chemical Physics 153, 020901 (2020).
    [31] Lambert, N., Ahmed, S., Cirio, M. & Nori, F. Modelling the ultra-strongly coupled spin-boson model with unphysical modes. Nat. Comm. 10, 3721 (2019).
    [32] Werner, A. H. et al. Positive tensor network approach for simulating open quantum many-body systems. Phys. Rev. Lett. 116, 237201 (2016).
    [33] Moritz, C. et al. Numerically exact open quantum systems simulations for arbitrary environments using automated compression of environments (2021). 2101.01653.
    [34] Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
    [35] Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in photonic quantum sensing. Nat. Photonics. 12, 724 (2018).
    [36] Seyranian, A. P., Kirillov, O. N. & Mailybaev, A. A. Coupling of eigenvalues of complex matrices at diabolic and exceptional points. J. Phys. A: Math. Gen. 38, 1723 (2005).
    [37] Ulrich, W. Quantum Dissipative Systems (World Scientific, Singapore, 2012), 4 edn.
    [38] El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018).
    [39] ¨ Ozdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity-time symmetry and exceptional points in photonics. Nat. Mater. (2019).
    [40] Gilles, D. & Eva-Maria, G. Signatures of three coalescing eigenfunctions. J. Phys. A: Math. Theor. 45, 025303 (2012).
    [41] Lau, H. K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).
    [42] Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187 (2017).
    [43] Chen, W., ¨ Ozdemir, S. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192 (2017).
    [44] Langbein, W. No exceptional precision of exceptional-point sensors. Phys. Rev. A 98, 023805 (2018).
    [45] Peng B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014).
    [46] L¨u, H., ¨ Ozdemir, S. K., Kuang, L.-M., Nori, F. & Jing, H. Exceptional Points in Random-Defect Phonon Lasers. Phys. Rev. Applied 8, 044020 (2017).
    [47] Miri, M. A. & Al`u, A. Exceptional points in optics and photonics. Science 363, 42 (2019).
    [48] R¨uter, C. E. et al. Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010).
    [49] Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167 (2012).
    [50] Liu, Z. P. et al. Metrology with PT -Symmetric Cavities: Enhanced Sensitivity near the PT -Phase Transition. Phys. Rev. Lett. 117, 110802 (2016).
    [51] Hassan, A. U., Hodaei, H., Hayenga, W. E., Khajavikhan, M. & Christodoulides, D. N. Enhanced Sensitivity in Parity-Time-Symmetric Microcavity Sensors. Adv. Photonics SeT4C.3 (2015).
    [52] Jing, H. et al. PT -Symmetric Phonon Laser. Phys. Rev. Lett. 113, 053604 (2014).
    [53] Jing, H. et al. Optomechanically-induced transparency in parity-timesymmetric microresonators. Sci. Rep. 5, 9663 (2015).
    [54] Zhang, J. et al. Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes. Phys. Rev. B 92, 115407 (2015).
    [55] Quijandr´ıa, F., Naether, U., ¨ Ozdemir, S. K., Nori, F. & Zueco, D. PT - symmetric circuit QED. Phys. Rev. A 97, 053846 (2018).
    [56] Choi, Y. et al. Quasieigenstate Coalescence in an Atom-Cavity Quantum Composite. Phys. Rev. Lett. 104, 153601 (2010).
    [57] Lee, S. B. et al. Observation of an Exceptional Point in a Chaotic Optical Microcavity. Phys. Rev. Lett. 103, 134101 (2009).
    [58] Wiersig, J. Sensors operating at exceptional points: General theory. Phys. Rev. A 93, 033809 (2016).
    [59] Jiangang, Z., ¨ Ozdemir, S. K., Lina, H. & Lan, Y. Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Express 18, 23535 (2010).
    [60] Dembowski, C. et al. Experimental Observation of the Topological Structure of Exceptional Points. Phys. Rev. Lett. 86, 787 (2001).
    [61] Dembowski, C. et al. Encircling an exceptional point. Phys. Rev. E 69, 056216 (2004).
    [62] Dietz, B. et al. Rabi oscillations at exceptional points in microwave billiards. Phys. Rev. E 75, 027201 (2007).
    [63] Liu, Y. L. et al. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system. Phys. Rev. A 95, 013843 (2017).
    [64] Ding, K., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their Experimental Realization. Phys. Rev. X 6, 021007 (2016).
    [65] Alfassi, B., Peleg, O., Moiseyev, N. & Segev, M. Diverging Rabi Oscillations
    in Subwavelength Photonic Lattices. Phys. Rev. Lett. 106, 073901 (2011).
    [66] Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354 (2015).
    [67] Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton polariton billiard. Nature 526, 554 (2015).
    [68] Kodigala, A., Lepetit, T. & Kant´e, B. Exceptional points in three-dimensional plasmonic nanostructures. Phys. Rev. B 94, 201103 (2016).
    [69] Sunada, S. Large Sagnac frequency splitting in a ring resonator operating at an exceptional point. Phys. Rev. A 96, 033842 (2017).
    [70] Jing, H., ¨ Ozdemir, S. K., L¨u, H. & Nori, F. High-order exceptional points in optomechanics. Sci. Rep. 7, 3386 (2017).
    [71] Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329 (2013).
    [72] Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127 (2016).
    [73] Pile, D. Exceptional plasmonics. Nat. Photonics. 11, 24 (2017).
    [74] Savasta, S. et al. Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna. ACS Nano 4, 6369 (2010).
    [75] Delga, A., Feist, J., Bravo-Abad, J. & Garcia-Vidal, F. J. Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching. Phys. Rev. Lett. 112, 253601 (2014).
    [76] Zhou, N., Yuan, M., Gao, Y., Li, D. & Yang, D. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime. ACS Nano 10, 4154 (2016).
    [77] Neuman, T., Esteban, R., Casanova, D., Garc´ıa-Vidal, F. J. & Aizpurua, J. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point- Dipole Approximation. Nano Lett. 18, 2358 (2018).
    [78] Dung, H. T., Kn¨oll, L. & Welsch, D. D. Spontaneous decay in the presence of dispersing and absorbing bodies: General theory and application to a spherical cavity. Phys. Rev. A 62, 053804 (2000).
    [79] Gonz´alez-Tudela, A., Huidobro, P. A., Mart´ın-Moreno, L., Tejedor, C. & Garc´ıa-Vidal, F. J. Reversible dynamics of single quantum emitters near metal-dielectric interfaces. Phys. Rev. B 89, 041402 (2014).
    [80] Stephen, H., Marten, R. & Andreas, K. Quantized pseudomodes for plasmonic cavity QED. Opt. Lett. 43, 1834 (2018).
    [81] Sebastian, F. et al. Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics. Phys. Rev. Lett. 122, 213901 (2019).
    [82] Ridolfo, A., Stefano, O. D., Fina, N., Saija, R. & Savasta, S. Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the fano effect on photon statistics. Phys. Rev. Lett. 105, 263601 (2010).
    [83] Delga, A., Feist, J., Bravo-Abad, J. & Garcia-Vidal, F. J. Theory of strong coupling between quantum emitters and localized surface plasmons. J. Opt. 16, 114018 (2014).
    [84] de Haas, W., de Boer, J. & van d¨en Berg, G. The electrical resistance of gold, copper and lead at low temperatures. Physica 1, 1115–1124 (1934).
    [85] Franck, J. P., Manchester, F. D. & Douglas, L. M. The specific heat of pure copper and of some dilute copper + iron alloys showing a minimum in the electrical resistance at low temperatures. Proc. R. Soc. Lond. A, 494–507 (1961).
    [86] Kondo, J. Resistance Minimum in Dilute Magnetic Alloys. Progress of Theoretical Physics 32, 37–49 (1964).
    [87] Alex, C. H. & Piers, C. The Kondo problem to heavy fermions (1993).
    [88] Anderson, P. W. A poor man's derivation of scaling laws for the kondo problem.
    Journal of Physics C: Solid State Physics 3, 2436–2441 (1970).
    [89] Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).
    [90] Leo, K. & Leonid, G. Revival of the Kondo effect. Physics World 14, 33–38 (2001).
    [91] Hur, K. L. Quantum dots and the Kondo effect. Nature 526, 203–204 (2015).
    [92] Damascelli, A., Hussain, Z. & Shen, Z. X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
    [93] Kolesnychenko, O. Y. et al. Surface electronic structure of cr(001): Experiment and theory. Phys. Rev. B 72, 085456 (2005).
    [94] Grobis, M., Rau, I. G., Potok, R. M. & Goldhaber-Gordon, D. The Kondo Effect in Mesoscopic Quantum Dots (2007).
    [95] Avinun-Kalish, M., Heiblum, M., Silva, A., Mahalu, D. & Umansky, V. Controlled dephasing of a quantum dot in the kondo regime. Phys. Rev. Lett. 92, 156801 (2004).
    [96] Sprinzak, D., Ji, Y., Heiblum, M., Mahalu, D. & Shtrikman, H. Charge distribution in a kondo-correlated quantum dot. Phys. Rev. Lett. 88, 176805 (2002).
    [97] Schuster, R. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 385, 417–420 (1997).
    [98] Jeong, H., Chang, A. M. & Melloch, M. R. The Kondo effect in an artificial quantum dot molecule. Science 293, 2221–2223 (2001).
    [99] Eto, M. & Nazarov, Y. V. Enhancement of Kondo effect in quantum dots with an even number of electrons. Phys. Rev. Lett. 85, 1306–1309 (2000).
    [100] Wingreen, N. S. Quantum many-body effects in a single-electron transistor. Science 304, 1258–1259 (2004).
    [101] Park, J. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 417, 722–725 (2002).
    [102] Yu, L. H. et al. Inelastic electron tunneling via molecular vibrations in single-molecule transistors. Phys. Rev. Lett. 93, 266802 (2004).
    [103] Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328, 1370–1373 (2010).
    [104] Edgar, A. O. et al. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett. 10, 105–110 (2010).
    [105] Paaske, J. et al. Non-equilibrium singlet-triplet Kondo effect in carbon nanotubes. Nat. Phys. 2 (2006).
    [106] Paaske, J. & Flensberg, K. Vibrational sidebands and the kondo effect in molecular transistors. Phys. Rev. Lett. 94, 176801 (2005).
    [107] Fern´andez-Torrente, I., Franke, K. J. & Pascual, J. I. Vibrational kondo effect in pure organic charge-transfer assemblies. Phys. Rev. Lett. 101, 217203 (2008).
    [108] Wegner, D. et al. Single-molecule charge transfer and bonding at an organic/ inorganic interface: Tetracyanoethylene on noble metals. Nano Letters 8, 131–135 (2008).
    [109] Czap, G. et al. Detection of spin-vibration states in single magnetic molecules. Phys. Rev. Lett. 123, 106803 (2019).
    [110] Giorgio, N. et al. Cavity-mediated coherent coupling between distant quantum dots. Phys. Rev. Lett. 120, 236801 (2018).
    [111] Sven, F. M. et al. Long-range spin coherence in a strongly coupled all-electronic dot-cavity system. Phys. Rev. B 96, 235431 (2017).
    [112] da Silva, L. G. G. V. D., Caio, H. L., Edson, V., Gerson, J. F. & Sergio, E. U. Conductance and kondo interference beyond proportional coupling. Phys. Rev. Lett. 119, 116801 (2017).
    [113] Liu, G. Z. et al. Light-induced suppression of Kondo effect at amorphous laalo3/srtio3 interface. Applied Physics Letters 109, 031110 (2016).
    [114] L´opez, R., Aguado, R., Gloria, P. & Carlos, T. Kondo effect in ac transport through quantum dots. Phys. Rev. Lett. 81, 4688–4691 (1998).
    [115] Kaminski, A., Nazarov, Y. V. & Glazman, L. I. Suppression of the Kondo effect in a quantum dot by external irradiation. Phys. Rev. Lett. 83, 384–387 (1999).
    [116] Li, Z. et al. Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems. Phys. Rev. Lett. 109, 266403 (2012).
    [117] Cirio, M. et al. A pseudo-fermion method for the exact description of mesoscopic transport: from single-molecule electronics to kondo resonance. Draft.
    [118] Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).
    [119] Fugger, D. M., Bauernfeind, D., Sorantin, M. E. & Enrico, A. Nonequilibrium pseudogap Anderson impurity model: A master equation tensor network approach. Phys. Rev. B 101, 165132 (2020).
    [120] Anton, F. K., Adam, M., Simone, D. L., Salvatore, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19 (2019).
    [121] Cirio, M., Simone, D. L., Lambert, N. & Nori, F. Ground state electroluminescence. Phys. Rev. Lett. 116, 113601 (2016).
    [122] Roch, N., Florens, S., Costi, T. A., Wernsdorfer, W. & Balestro, F. Observation of the underscreened kondo effect in a molecular transistor. Phys. Rev. Lett. 103, 197202 (2009).
    [123] Abadillo-Uriel, J. C., Eriksson, M. A., Coppersmith, S. N. & Friesen, M. Enhancing the dipolar coupling of a s-t0 qubit with a transverse sweet spot. Nat. Commun. 10, 5641 (2022).
    [124] Lambert, N. et al. Amplified and tunable transverse and longitudinal spin photon coupling in hybrid circuit-QED. Phys. Rev. B 97, 125429 (2018).
    [125] Beaudoin, F., Quirion, D. L., Coish, W. A. & Ladri`ere, M. P. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings. Nanotechnology 27, 464003 (2016).
    [126] Hu, J., Xu, R. X. & Yan, Y. J. Communication: Pad´e spectrum decomposition of fermi function and bose function. The Journal of Chemical Physics 133, 101106 (2010).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE