簡易檢索 / 詳目顯示

研究生: 吳騏廷
Wu, Chi-Ting
論文名稱: 超淺層接面活化與金屬矽化物之熱穩定性於32/22奈米技術之研究
Studies on Activation of Ultra-shallow Junctions and Thermal Stability of Metal Silicide for 32/22 nm Technology Nodes
指導教授: 李文熙
Lee, Wen-Hsi
共同指導教授: 王英郎
Wang, Ying-Lang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 175
中文關鍵詞: 飛秒雷射微波退火熱遇算金屬矽化物聚集離子佈植
外文關鍵詞: Femtosecond Laser, Microwave Annealing, Thermal budget, Metal silicide, Agglomeration, Ion implantation
相關次數: 點閱:119下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著元件尺寸的縮小, S/D的接面深度需要有較佳的活化效果.製程的線寬縮減至32奈米之下所造成的超淺層接面活化不易與金屬矽化物之薄化阻值增高並需改善其熱穩定性,已成為現今半導體製程中所面臨的重大挑戰.
    本研究的第一部份為使用兩階段退火方式對硼離子佈植後Ge-PAI結構進行探討,經由Ge(20keV/5E14), C(3keV/1E15)與高/低能量之B(2keV/2E15與400eV/2E15)佈植後的試片進行RTA退火達到因Ge-PAI預先非晶化所造成的非晶矽層進行修復至再結晶,第二段退火則利用飛秒雷射進行硼離子的活化. .飛秒雷射為非線性吸收之能量,而且優點為有較短雷射脈衝與較少的熱預算.然而,飛秒雷射會有較大的能量造成表面熔化過頭.在持溫時間的控制可以完成固相磊晶之工作.退火當中佈植了碳離子後也可以有效的幫助硼離子的擴散發生.其中探討不同RTA溫度,持溫時間對非晶層轉換成結晶層之探討,在配合飛秒雷射不同的能量對硼的活化現象,是否因能量過高而造成硼離子的擴散產生.飛秒雷射退火後,可以使離子活化成功並且完成活化的效果.第二部份則使用微波退火與飛秒雷射退火探討預先非晶化所造成的非晶層進行修復至矽再結晶與硼離子活化之特性改善.微波退火和飛秒雷射退火與傳統退火比較可以有效降低溫度與有效的活化接面並不會有過多的熱預算產生.在微波退火使用3P與4P持溫200秒之後可以得到片電阻值為805 和 895 Ω/sq.經微波退火後,在使用飛秒雷射退火從110mJ下,可以發現片電阻以降製300Ω/sq且接面的深度也只有14.7nm. 飛秒能量提升到120mJ時其接面深度為16nm.在此研就中可以說明微波退火可以有效的使離子佈植後的離子有效的活化.

    相較於TiSi2與CoSi2,NiSi除了有較低的矽消耗,而且只需一階段退火。但是NiSi在高溫(>650°C)時卻會有熱穩定性不佳的問題,並容易形成高電阻值的NiSi2相。為了改善及探討熱穩定性不佳的問題,研究中分數個部分討論.第三部份針對金屬矽化物系列熱穩定性之探討,首先利用了不同的覆蓋層(Capping layer) TiNx或是NiNx之氮化物對鎳矽化物之高溫加熱的聚集行為探討.隨著TiNx之氮含量增加,其NiSi之表面聚集行為有明顯的改善,但因氮含量越高的TiNx最後會遇到移除不易的問題,且造成NiSi移除了TiNx卻未被移除的現象產生.使用了NiNx的覆蓋層經不同的氮含量合成會有不同的相產生(Ni4N與Ni3N),實驗中較低氮含量(10,20 sccm)的Ni4N相對於NiSi之熱穩定性有著較佳的表現,片電阻值也較低,當氮含量到30sccm時,所形成的Ni3N相造成NiSi有表面聚集行為產生,熱穩定性下降與片電阻值上升,使得整體NiSi特性變差.第四部份使用了中介層(interlayer)對NiSi之熱穩定性的探討,使用了不同的金屬中介層(Mo, Ru, Ti, Ta, Zn)進行討論,發現Zn中介層有著較佳的保護效果,且NiSi之熱穩定性佳,片電阻值低,較佳的移除率.最後利用離子佈植法將不同的離子與NiSi進行反應合成,結果可以形成多元的矽化物可以降低接觸電阻並改善其熱穩定性.使用不同的覆蓋層對不同摻質基板之矽化物製程熱穩定性分析,同時利用SEM觀察表面的聚集現象,XRD分析NiSi的結晶性,並利用TEM輔助觀察NiSi的聚集行為。由結果可觀察利用TiN覆蓋層,於700℃下電阻值皆有上升的趨勢。另外,在使用Zn作為中介層下,摻質對阻值的影響較不明顯,由片電阻即時量測可觀察到即使>650℃下退火依然沒有電阻急遽上升的情況產生,這也證實Zn在互補式金氧半電晶體製程作為NiSi中介層材料有極佳的特性。

    As device dimensions shrink, there is an increasing need to raise dopantactivation and reduce junction depth for source/drain (S/D) extension, and technology node deceases to below 32nm below, issuing ultra-shallow junction activation and increasing resistance caused by metal silicide thinning, which has been a major challenge of the semiconductor process.
    The main topics of this thesis we study can be divided into three categories; (1) dopant profile engineering by two steps of annealing ( RTA or Microwave + FLA); (2) layer of TiNx or NiNx (N ratio flow 0~120sccm) and the interlayers, such as Mo, Ru, Ta, Ti and Zn, on the microstructure, the electrical properties and the thermal properties of forming nickel silicides. (3) Improvement on Electrical properties and Thermal Stability of the Metal Silicide on Si Wafer with B and As Ion Implantation
    The first part of this research is using two-step annealing to recover and activate boron implanted silicon. The samples receiving a pre-amorphous implantation (PAI) treatment with Ge (20keV @5E14 atoms/cm2) , co-implanting with carbon (3keV @1E15 atoms/cm2) and implanting with boron of different energy (2keV @2E15 atoms/cm2, 400eV @2E15 atoms/cm2) were used. In the first step of annealing, RTA was employed to re-grow the amorphous layer to cause be Ge PAI in the crystal silicon phase. In the second step, femtosecond laser was used to activate implanted boron. Femtosecond laser has nonlinear absorption, short pulse and low thermal budget. However, if laser energy is too high, laser would melt the surface of silicon. Thesoak timecan be controlled in thesolid phase of theepitaxyre-growth, and carbon co-implantation can effectively suppress boron diffusion. The effect of RTA temperature and soaking time on regrowth of amorphous layer was investigated. After femtosecond laser, the implanted boron was effectively activated.
    Comparison to femtosecond laser and RTA, microwave annealing can activate dopants at lower temperature with lower thermal budget. After microwave 3P 200 seconds and 4P 200 seconds, the sheets of resistance were 805 and 895Ω/sq. After microwave annealing, using 110 mJ femtosecond laser can lower the sheet resistance to 300 Ω/sq below, and the junction depth was 14.7nm. When the energy of femtosecond laser was increased to 120 mJ, the junction depth is 16nm. This result unveils that microwave annealing can effectively activate implanted dopants.
    The second part of this research we investigate the effects of the capping layer of TiNx or NiNx (N ratio flow 0~120sccm) and the interlayers, such as Mo, Ru, Ta, Ti and Zn, on the microstructure, the electrical properties and the thermal properties of forming nickel silicides.
    In order to improve and investigate the issue of thermal stability, we investigate the thermal stability of metal silicide. As the increase of nitrogen content in TiNx, surface agglomeration of NiSi was improved obviously. But TiNx with high content of nitrogen is hard to be removed, and it will make a phenomenon that NiSi is removed but TiNx still exists.
    In additional, different interlayers (Mo, Ru, Ti, Ta, and Zn) were used to improve the electrical properties and thermal stability of NiSi. It unveils that Zn interlayer has better protection, better thermal stability of NiSi, lower sheet resistance and is easier to be removed. At last, ion implantation was used to synthesize various elements and NiSi, and it can form silicide to decrease contact resistance and improve thermal stability. SEM was used to observe surface agglomeration, XRD was used to analysis crystallinity of NiSi, and TEM was used to observe surface agglomeration auxiliary. The effect of dopant on resistance was not obvious when Zn was used as interlayer. Using in-situ sheet resistance measurement can observe that resistance does not increase fiercely even the annealing temperature is higher than 650℃, and it proves that Zn has an outstanding characteristic as the interlayer of NiSi in the CMOS process.
    The third part of this research we investigate how to improve the electrical properties and thermal stability of the metal silicide on Si wafer with B and As ion implantation. The results indicate that the implanted ions (B and BF2) inhibited thermal stability and enhanced surface agglomeration are better than that of the As and P no matter by using a TiN capping layer or using Zn interlayer.

    摘要 I Abstract IV CHAPTER 1 Introduction 1 1-1 Background 1 1-2. Introduction to MOSFET Scaling 2 1-3. Ultra-shallow Junction 4 1-4. Metal silicide 6 1-5 Motivation 9 1-6. Organization of thesis 12 CHAPTER 2 Literature Reviews 15 2-1 Ultra-shallow Junctions 15 2-2-1 Solid Phase Epitaxal Regrowth (SPER) 17 2-3Activation of annealing technology 23 2-3-1 Rapid Thermal Process 23 2-3-2Femtosecond Laser Process 30 2-3-3 Microwave Annealing Process 31 2-4Metal silicide Formation 34 2-4-1 Phase Sequence and Reaction Kinetics 34 2-5 Review of metal silicide 37 2-5-1 Metal silicide 37 2-5-2 Salicide technology 39 2-5-3 Titanium Silicide 41 2-5-4 Cobalt Silicide 42 2-5-5Nickel Silicide 43 2-5-6 Silicon Consumption Issue 44 2-5-7 Bridge effect 46 2-5-8 Narrow line effect 46 2-5-9 Implant into silicide (IIS) 47 2-5-10 Thermal Stability of Thin Film Silicides 48 2-5-11 Processing Temperature Window 49 CHAPTER 3 Experiment Scheme 51 3-1 Experiment materials 51 3-1-1 Substrates 51 3-1-2 Implantation ion source 51 3-1-3 Process gas 51 3-1-4 Targets 52 3-1-5 Chemicals 52 3-2 Process Equipment 52 3-2-1 Implanter 52 3-2-2 RTA 56 3-2-3 Femtosecond Laser 58 3-2-4 Microwave Annealing [172] 58 3-2-5 Sputter system 60 CHAPTER 4 Investigation on the ultra-shallow junctions for 32/22nm technology node 62 4-1 Activation for Co-implantation Boron and Carbon in Ge PAI-Si wafer by using two-steps annealing of femtosecond laser 62 4-1-1 Introduction 62 4-1-2 Experimental 65 4-1-3 Results and Discussion 66 4-2. Activation for Co-implantation of Boron and Carbon in Ge PAI-Si wafer by using two-steps annealing of RTA and femtosecond laser 74 4-2-1 Introduction 74 4-2-2 Experimental 77 4-2-3 Result and Discussion 77 4-3.Activation for implantation of Boron in Ge-PAI-Si wafer by using two-step annealing of microwave and femtosecond laser 87 4-3-1 Introduction 87 4-3-2 Experimental 89 4-3-3 Result and Discussion 90 4-4 Conclusion 102 CHAPTER 5 Improvement on Electrical properties and Thermal Stability of the Metal Silicide 104 5-1 Improvement on Electrical properties and Thermal Stability of the Nickel Silicides by TiNx Capping Layer 104 5-1-1 Introduction 104 5-1-2 Experiment 105 5-1-3 Result and Discussion 106 5-2. Improvement on Electrical properties and Thermal Stability of the Nickel Silicides by NiNx Capping Layer 112 5-2-1 Introduction 112 5-2-2 Experimental 113 5-2-3 Result and Discussion 115 5-3. Improvement on Electrical properties and Thermal Stability of the Nickel Silicides by Various Interlayer Films 124 5-3-1 Introduction 124 5-3-2 Experimental 125 5-3-3 Result and Discussion 126 CHAPTER 6 Improvement on Electrical properties and Thermal Stability of the Metal Silicide on Si Wafer with B and As Ion Implantation 136 6-1 Introduction 136 6-2 Experimental 137 6-3 Result and Discussion 138 CHAPTER 7 Conclusions and Future Works 149 7-1 Conclusions 149 7-2 Future Works 152 Reference 153

    [1] G. E. Moore, Electronics 38, 114 (1965).
    [2] M.H. Clark, PhD Dissertation, University of Florida, Gainesville, FL (2004).
    [3] J.D. Plummer, M.D. Deal and P.B. Griffin, Silicon VLSI Technology.
    Fundamentals, Practice and Modeling, (Prentice Hall, Upper Saddle River, NJ,
    2000).
    [4] J. F. Ziegler, Ion Implantation Science and Technology (Ion Implantation Technology Co., Edgewater, MD, 2000).
    [5] L.A. Christel, J. F. Gibbons and T. W. Sigmon, J. Appl. Phys. 52, 7143 (1981).
    [6] K.N. Tu, S.I. Tan, P. Chaudhari, K. Lai and B.L. Crowder, J. Appl. Phys. 43,
    4262, (1972).
    [7] M. H. Brodsky, R.S. Title, K.Weisser and G.D. Pettit, Phys. Rev. B1, 2632
    (1969)
    [8] R. Drosd and J. Washburn, J. Appl. Phys. 53, 397 (1982).
    [9] K.S. Jones, S. Prussin and E. R. Weber, Appl. Phys. A 45, 1 (1988).
    [10] J.L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham and J. M. Poate, J.
    Appl. Phys. 82 (1), 120 (1997).
    [11] S. Coffa, S. Libertino and C. Spinella, Appl. Phys. Lett, 76(3), 321 (2000).
    [12] S. Libertino, J. L. Benton, S. Coffa, and D. J. Eaglesham, Mat. Res. Soc. Proc. 504, 3, (1998).
    [13] D.J. Eaglesham, P. A. Stolk, H.-J. Gossmann and J. M. Poate, Appl. Phys. Lett. 65 (18) (1994).
    [14] P.A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jara’z, J. M. Poate, H. S. Luftman and T. E. Haynes, J. Appl. Phys. 81 (9), (1997).
    [15] G.Z. Pan, K.N. Tu and A. Prussin, J. Appl. Phys. 71(5), 659, (1997).
    [16] J. Li and K.S. Jones, Appl. Phys. Lett. 73 (25), (1998).
    [17] C. Bonafos, M. Omri, B. de Mauduit, G. BenAssayag, A. Claverie, D. Alquier A. Martinez and D. Mathiot, J. Appl. Phys. 82, 2855 (1997).
    [18] L.H. Zhang, K. S. Jones, P. H. Chi and D. S. Simons, Appl. Phys. Lett. 67 (14), 2025, (1995).
    [19] R. P. Angelucci, P. Negrini, and S. Solmi, Appl. Phys. Lett. 49(21), 1468
    (1986).
    [20] M. Servidori, Z. Sourek, and S. Solmi, J. Appl. Phys. 62, 1723 (1987).
    [21] A.E. Michel, W. Rausch, P.A. Ronsheim and R.H. Kastl, Appl. Phys. Lett.
    50(7), 416, (1987).
    [22] Semiconductor Industry Association. International Semiconductor Technology Roadmap. http://www.itrs.net/Common/2005ITRS/Home2005.htm (2005).
    [23] D. M. Camm, B. Lojek, Proc. 2nd Int. Conf. Advanced Thermal Processing of Semiconductors (RTP, Round Rock, TX 1994), p.259.
    [24] W. Shockley, .“Forming Semiconductive Devices by Ionic Bombardment,.” U.S. Patent 2,787,654.
    [25] J.D. Plummer, M.D. Deal and P.B. Griffin, Silicon VLSI Technology. Fundamentals, Practice and Modeling, (Prentice Hall, Upper Saddle River, NJ, (2000).
    [26] J. S. Williams and J. M. Poate, Ion Implantation and Beam Processing, (Academic Press Australia 1984), p.15
    [27] F.F. Morehead and B.L. Crowder, Rad. Eff., 6, 27 (1970).
    [28] K.S. Jones and G.A. Rozgonyi, Rapid Thermal Processing Science and
    Technology, 5, 123 (Academic Press, 1993).
    [29] J.F. Gibbons, Lectures on Ion Implantation and Proton Enhanced Diffusion, Univ. of Tokyo, Tokyo, Japan (Jap. Soc. Appl. Phys.) (1977).
    [30] Y.Shih, Ph.D. Dissertation., University of California, Berkeley (1985).
    [31] J. Washburn, C.S. Murty, D.K. Sadana, P. Byrne, R. Gronsky, N. Cheung and R. Kilaas, Nucl. Inst. Meth., 209, 345 (1983).
    [32] H.J. Stein, F. Vook, D.K. Brice, J.A. Borders and S.T. Picraux, Rad. Eff., 6, 19(1970).
    [33] G. Dearnaley, J. H. Freeman, R. S. Nelson and J. Stephen, Ion Implantation (1973).
    [34] L. Csepregi and J. W. Mayer. Phys. Letts., 54A (2), 157 (1975)
    [35] J. M. Poate and J.S. Williams, Ion Implantation and Beam Processing
    (Academic Press, New York 1984), p. 27
    [36] J. Narayan and O. W. Holland, Phys. Stat. Sol., 78, 225 (1982).
    [37] J. Narayan, O.W. Holland and B. R. Appleton, J. Vac. Sci. Technol. B1(4),
    871(1993)
    [38] P.J. Timans, R.A. McMahon and H. Ahmed, Mat. Res. Soc. Proc., 45, 337
    (1985).
    [39] P. J. Timans, R.A. McMahon and H. Ahmed, Mat. Res. Soc. Proc. 52, 123
    (1986).
    [40] R. G. Elliman, J. S.Williams, S. T. Johnson and E. Nygren, Mat. Res. Soc.
    Proc. 74, 471 (1987)
    [41] R. G. Elliman, J. S.Williams, W. L. Brown, A. Leiberich, D. M. Mayer and R.
    V. Knoel, Nucl. Instr. Meth. Phys. Res. B. B19/20, 435 (1987)
    [42] L. Olson, J. A. Roth, L.D. Hess and J. Narayan, Mat. Res. Soc. Proc. 23, 375(1984)
    [43] G.L. Olson, Mat. Res. Soc. Proc., 35, 25 (1985).
    [44] G.L. Olson, J. A. Roth, Y. Rytz-Froidevaux and J. Narayan, Mat. Res. Soc.
    Proc., 35, 211 (1985).
    [45] L. Csepregi and J. W. Mayer. Phys. Letts., 54A (2), 157 (1975)
    [46] L. Csepregi, J. W. Mayer and T.W. Sigmon. Appl. Phys. Lett., 29(2), 92 (1976)
    [47] L. Csepregi, E.F. Kennedy, T.J. Gallagher and J.W. Mayer, J. Appl. Phys.
    48(10), 4234 (1977).
    [48] G.L. Olson, Mat. Res. Soc. Proc., 35, 25 (1985).
    [49] C. Licoppe and Y. I. Nissim, J. Appl. Phys. 59(2), 432 (1986)
    [50] L. Csepregi, E.F. Kennedy, J.W. Mayer and T.W. Sigmon. J. Appl. Phys., 49(7),3906 (1978)
    [51] F. Spaepen and D. Turnball, Laser .–Solid Interactions and Laser-Processing, editors S. Ferris et al. AIP Conf. Proc., 50, 73 (1979)
    [52] R. Drosd and J. Washburn, J. Appl. Phys. 53, 397 (1982).
    [53] R. Drosd and J. Washburn, J. Appl. Phys., 51, 1656 (1978)
    [54] C. R. Brundle, C. A. Evans, Jr., and S. Wilson, Encyclopedia of Materials
    Characterization, (Butterworth-Heinemann, Boston, MA, 1992) pp. 40-41.
    [55] F.A. Trunbore, Bell System Tech. Jour., 39, 205 (1960).
    [56] J. Faust and H. John, J. Phys. Chem. Coll. 23, 1119 (1962)
    [57] M. E. Law, Y. M. Haddara, and K. S. Jones, J. Appl. Phys. 84, 3555 (1998)
    [58] P. Blood, W. L. Brown, and G. L. Miller, J. Appl. Phys. 50, 173 (1979).
    [59] W.O. Adekoya, M. Hage-Ali, J.C. Muller and P. Siffert, Appl. Phys. Lett.
    53(6), 511 (1988)
    [60] C.D. Lindfors, K. S. Jones., M.E. Law, D.F. Downey and R.W. Murto, Mat.
    Res. Soc. Proc. 610, B10.2.1 (2000).
    [61] C.D. Lindfors , K. S. Jones and M. J. Rendon, Mat. Res. Soc. Proc. 669, J8.5.1(2001)..
    [62] I. Suni, G. Goltz, M.G. Grimaldi, M-A Nicolet and S.S. Lau, Appl. Phys. Lett.,40(3), 269 (1982).
    [63] I. Suni, G. Goltz, M. G. Grimaldi, M-A. Nicolet and S.Lau, Thin Solid Films,
    93, 171 (1982)
    [64] I. Suni, G. Goltz, M. G. Grimaldi, M-A. Nicolet and S.Lau, Mat. Res. Soc.
    Pro., 10, 175 (1982)
    [65] H. Kerkow, G. Kreysch and B. Lukasch. Phys. Stat. Sol. 82, 125 (1984)
    [66] W.O. Adekoya, M. Hage-Ali, J.C. Muller and P. Siffert, Amer. Inst. Phys.,
    53(6), 511 (1988)
    [67] A.M. Mazzone, Phys. Stat. Sol. A, 95, 149 (1986)
    [68] L.H. Zhang, K. S. Jones, P. H. Chi and D. S. Simons, Appl. Phys. Lett. 67 (14),2025, (1995).
    [69] H.G.A. Huizing, C. C. G. Visser, N.E.B. Cowern, P.A. Stolk and R.C. M. de
    Kruif, Appl. Phys. Lett. 69(9), 1211 (1996).
    [70] A.E. Michel, W. Rausch, P.A. Ronsheim and R.H. Kastl, Appl. Phys. Lett.
    50(7), 416, (1987).
    [71] N.E. B. Cowern, M. Jaraiz, F. Cristiano, A. Claverie and G. Mannino, Tech.
    Dig. Int. Elec. Dev. Meet. 333 (1999).
    [72] J.L. Benton, S. Libertino, P. Kringoi, D. J. Eaglesham, J. M. Poate, and S.
    Coffa, J. Appl. Phys. 82, 120 (1997).
    [73] J.L. Benton, K. Halliburton, S. Libertino, D. J. Eaglesham and S. Coffa, J.Appl.Phys. 84 (9), 4749 (1998)
    [74] S. Coffa, V. Privitera, F. Priolo, S. Libertino, and G. Mannino, J. Appl. Phys.
    81, 1639 (1997)
    [75] S. Libertino, S. Coffa , J.L. Benton, K. Halliburton and D. J. Eaglesham, Nucl.Inst. Meth. Phys. Res.B 148, 247 (1999).
    [76] S. Libertino, S. Coffa, C. Spinella, J.L. Benton and D. Arcifa, Mat. Sci. Eng.
    B17, 137 (2000).
    [77] P.A. Packan and J.D. Plummer, Appl. Phys. Lett. 56 (18), 1787 (1990)
    [78] N. Arai, S. Takeda, and M. Kohyama, Phys. Rev. Lett. 78, 4265 (1997)
    [79] M. Kohyama and S.Takeda, Phys. Rev. B 60 (11), 8075 (1999)
    [80] N.E.B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. A. Huizing, J. G. M. van Berkum, F. Cristiano, A. Claverie and M. Jara’z, Phys. Rev. Letts. 82 (22), 4460 (1999)
    [81] A. Claverie, B. Colombeau, B. De Mauduit, C. Bonafos, X. Hebras, G. Ben
    Assayag, and F. Cristiano, Appl. Phys. A 76, 1025 (2003).
    [82] D.J. Eaglesham, P. A. Stolk, H.-J. Gossmann and J. M. Poate, Appl. Phys. Lett.65 (18) (1994).
    [83] A. Claverie, B. Colombeau, F. Cristiano, A. Altibelli and C. Bonafos, Nucl.
    Instr. Meth. Phys. Res. B 186 (1-4), 281 (2002).
    [84] S. Solmi, F. Baruffaldi and R. Canteri, J. Appl. Phys. 69, 2135 (1991).
    [85] A. Claverie, B. Colombeau, G.B. Assayag, C.Bonafos, F. Cristiano, M. Omri and B. de Mauduit, Mat. Sci. Semi. Proc. 3, 269 (2000).
    [86] S. Takeda, M. Kohyama, and K. Ibe, Phil. Mag. A 70, 287 (1994).
    [87] S. Coffa, S. Libertino and C. Spinella, Appl. Phys. Lett, 76(3), 321 (2000).
    [88] M. Seibt, J. Imschweiler and H. A. Hefner, Mat. Res. Soc. Proc. 316, 167 (1994).
    [89] G. H. Gilmer, T. Diaz de la Rubia, D. M. Stock and M. Jaraiz, Nucl. Instr. Meth. Phys. Res. B 102, 247 (1995).
    [90] C.S. Rafferty, G.H. Gilmer, M. Jaraiz, D.J. Eaglesham and H-J. Gossmann,
    Appl. Phys. Lett., 68, 2395 (1996).
    [91] B. de Mauduit, L. Laanab, C. Bergaud, M.M. Faye, A. Martinez and A.
    Claverie, Nucl. Instr. Meth. Phys. Res. B84, 190 (1990).
    [92] D. J. Eaglesham, P.A. Stolk, H-J. Grossman, T.E. Haynes and J. M. Poate,
    Nucl. Inst. Meth. Phys. Res.106, 191 (1995).
    [93] L. Laanab, C. Bergaud, C. Bonafos, A. Martinez, and A. Claverie, Nucl. Inst. Meth. B 96, 236 (1995).
    [94] S. S. Li, Semiconductor Meas. Tech. 400-47, 1 (1979)
    [95] L.S. Robertson, K.S. Jones, L.M. Rubin and J. Jackson, J. Appl. Phys. 87(6),2910 (2000).
    [96] K. S. Jones, R. G. Elliman, M. M. Petravic, and P. Kringhoj. Appl. Phys. Lett.68, 3111 (1996)
    [97] G.Z. Pan, K.N. Tu and A. Prussin, J. Appl. Phys. 71(5), 659, (1997).
    [98] C. Bonafos, D. Mathiot and A. Claverie, J. Appl. Phys. 83(6), 3008 (1998).
    [99] M. Omri, L. F. Giles and A. Claverie, Mat. Res. Soc. Proc. 568, 219 (1999).
    [100] L. F. Giles, M. Omri, B. de Mauduit, A. Claverie, D. Skarlatos, D. Tsoukalas, and A. Nejim, Nucl. Instr. and Meth. B 148, 273 (1999).
    [101] K.S. Jones, K. Moller, J. Chen and M. Puga-Lambers, IEEE Proc. Ion Impl. Tech. Conf., 96, 618 (1997).
    [102] L. Laanab, C. Bergaud, M.M. Faye, A. Martinez and A. Claverie, Mat. Res. Soc. Proc. 279, 381 (1993).
    [103] J. Liu, M.E.Law and K.S. Jones, Solid State Elec., 38, 1305 (1995).
    [104] S.C. Jain, W. Schoenmaker, R. Linsday, P.A. Stolk, S. Decoutere and H.E.Maes, Appl. Phys. Revs. 91, 8918 (2002).
    [105] N.E. B. Cowern, J.T.F. Janssen and H.F.F. Jos, J. Appl. Phys. 68, 6191 (1990).
    [106] A. D. Lilak, S. K. Earles, M. E. Law and K. S. Jones, Appl. Phys. Lett. 74(14),2038 (1999).
    [107] S. Mirabella, E. Bruno, F. Priolo, D. De Salvador, E. Napolitani, A. V. Drigo,and A. Carnera, Appl. Phys. Lett., 83(4), 680 (2003).
    [108] F.A. Trunbore, Bell System Tech. Jour., 39, 205 (1960).
    [109] S. Mirabella, E. Bruno, F. Priolo, D. De Salvador, E. Napolitani, A. V. Drigo,and A. Carnera, Appl. Phys. Lett., 83(4), 680 (2003).
    [110] P.A. Stolk, H-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, J. M. Poate and H. S. Luftman, Appl. Phys. Lett. 66 (5), 570 (1995).
    [111] M. B. Huang and I. V. Mitchell, J. Appl. Phys. 85, 174 (1999).
    [112] L. Pelaz, G. H. Gilmer, H. .–J. Gossmann, C. S. Rafferty, M. Jaraiz and J.
    Barbolla, Appl. Phys. Lett. 74, 3657 (1999).
    [113] S. Solmi, M. Bersani, M. Sbetti, J. L. Hansen and A. N. Larsen, J. Appl. Phys. 88, 4547 (2000).
    [114] G. Mannino, P. A. Stolk, N. E. B. Cowern, W. B. de Boer, A. G. Dirks, F.
    Rooze-boom, J. G. M. van Berkum, P. H. Woerlee, and N. N. Toan, Appl. Phys. Lett., 78, 889, (2001).
    [115] A.D. Lilak, M. E. Law, L. Radic, K.S. Jones and M. Clark, Appl. Phys. Lett., 81(12) (2002).
    [116] D. De Salvador, E. Napolitani, G. Bisognin, A. Carnera, E. Bruno, S.
    Mirabella, G. Impellizzeri, and F. Priolo, Mat. Sci. Eng. B 124.–125 (2005).
    [117] A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, IEEE Trans. Electron Dev. 49, 1183 (2002).
    [118] L. Pelaz, G. H. Gilmer, H. .–J. Gossmann, C. S. Rafferty, M. Jaraiz and J.
    Barbolla, Appl. Phys. Lett. 74, 3657 (1999).
    [119] S.C. Jain, W. Schoenmaker, R. Linsday, P.A. Stolk, S. Decoutere and H.E. Maes, Appl. Phys. Revs. 91, 8918 (2002).
    [120] W.K. Hofker, H. W. Werner, D.P. Oosthoek and H.A.M. de-Grefte, Appl. Phys. 2, 265 (1973).
    [121] R.T. Hodgson, V. Deline, S.M. Mader, F.F. Morehead and J.C. Gelpey, Appl. Phys. Lett. 44, 589 (1984).
    [122] T.O. Sedgwick, Symp. Red. Temp. Proc. for VLSI, Fall Meet. Electrochem. Soc., (1985).
    [123] G.S. Oehrlein, R. Gbez, J.D. Fehribach, E.F. Gorey, T.O. Sedgwick, S. Cohen and V.R. Deline, Proc. 13th Int. Conf. Defects in Semicond., 593 (1984).
    [124] K. Cho, M. Numan. T. Finstad, W.Chu, J. Liu and J. Wortman, Appl. Phys.
    Lett. , 47, 1321 (1985).
    [125] A.E. Michel, W. Rausch, P.A. Ronsheim and R.H. Kastl, Appl. Phys. Lett.
    50(7), 416, (1987).
    [126] M.D. Giles, J. Electrochem. Soc., 138, 1160 (1991).
    [127] S. Shishiguchi, A.Mineji, T.Y. Matsuda and H.Kitajima, Electrochem. Soc.
    Symp. Proc. 99(10), 105 (1999).
    [128] S.B. Felch, S. Talwar, C. Gelatos, Y. Wang, D.F. Downey and E.A. Arevalo, Ion Implant Technology 2000, IEEE (2000).
    [129] S. Yang and M.O.Thompson, Mat. Res. Soc. Proc. 669, J7.4. (2001)
    [130]G.C. Stuart, D.M. Camm, J. Cibere, L. Kaludjercic, S.L. Kervin, B. Lu, K.J.
    McDonnell and N. Tam, 10th IEEE International Conference of Advanced Thermal Processing of Semiconductors, pg. 77 (2002).
    [131] Sugar A. Ultrafast (femtosecond) laser refractive surgery. Curr Opin Ophthalmol. 2002;13:246–9
    [132] He L, Sheehy K, Culbertson W. Femtosecond laser-assisted cataract surgery. Curr Opin Ophthalmol. 2011;22:43–52
    [133] Krasnov MM. Laser-phakopuncture in the treatment of soft cataracts. Br J Ophthalmol. 1975;59:96–8
    [134] Peyman GA, Katoh N. Effects of an erbium: YAG laser on ocular structures. Int Ophthalmol. 1987;10:245–53
    [135] Walkow T, Anders N, Pham DT, Wollensak J. Causes of severe decentration and subluxation of intraocular lenses. Graefes Arch Clin Exp Ophthalmol. 1998;236:9–12
    [136] Cekic O, Batman C. The relationship between capsulorhexis size and anterior chamber depth relation. Ophthalmic Surg Lasers. 1999;30:185–90
    [137] Wolffsohn JS, Buckhurst PJ. Objective analysis of toric intraocular lens rotation and centration. J Cataract Refract Surg. 2010;36:778–82
    [138] Gale RP, Saldana M, Johnston RL, Zuberbuhler B, McKibbin M. Benchmark standards for refractive outcomes after NHS cataract surgery. Eye (Lond) 2009;23:149–52
    [139] Murphy C, Tuft SJ, Minassian DC. Refractive error and visual outcome after cataract extraction. J Cataract Refract Surg. 2002;28:62–6
    [140] Cullen K, Hall M, Golosinskiy A. Ambulatory surgery in the United States, 2006
    [141] W.J. Chen, Ph. D. Thesis, “Interfacial Reaction of Nickel Metal Thin Films on Silicon,” National Tsing Hua University (1991)
    [142] H.M. Lo, M. S. Thesis, “The Effects of Stress on the Formation of Nickel Silicides,” National Tsing Hua University (1998)
    [143] L.J Chen and C.Y. Hou, “On the Formation of Nickel Silicides by
    Thermal Annealing,” Chn. J. Mat. Sci. 15 (1), 1-11 (1983)
    [144] R.J. Nemanich, H. Jeon, C.A. Sukow, J.W. Honeycutt, and G.A.
    Rozgonyi, “Nucleation and morphology of TiSi2 on Si,” Mater. Res. Soc. Symp. Proc. 260, 195-206 (1992)
    [145] E.G. Colgan, J.P. Gambino, and Q.Z. Hong, “Formation and stability of silicides on polycrystalline silicon,” Mater. Sci. Eng., R 16, 43-96(1996)
    [146] T. Nolan, R.Beyers, and R. Sinclair, “Evidence for grain boundary
    grooving model of agglomeration in polycrystalline TiSi2 thin films,”Mater. Res. Soc. Symp. Proc. 202, 95-100 (1991)
    [147] T.P. Nolan and R. Sinclair, “Modeling of agglomeration in
    polycrystalline thin films: Application to TiSi2 on a silicon substrate,” J.
    Appl. Phys. 71, 720-724 (1992)
    [148] Z.G. Xiao, G.A. Rozgonyi, C.A. Canovai, and C.M. Osburn,
    “Agglomeration of cobalt silicide films,” Mater. Res. Soc. Symp. Proc.
    202, 101-106 (1991)
    [149] S.M. Chang, Ph. D. Thesis, “ Interfacial Reactions of Titanium and
    Cobalt Metal Thin Films on Silicon,” National Tsing Hua University
    (2000)
    [150]http://download.intel.com/museum/Moores_Law/Printed_Materials/Moores_Law_2pg.pdf151.http://download.intel.com/technology/silicon/HighK-MetalGate-PressFoils-final.pdf
    [152] C.S. Kang, H.J. Cho, R. Choi, Y.H. Kim C.Y. Kang, S.J. Rhee, C.
    Choi, M.S. Skbar, and J.C. Lee: Electron Devices, IEEE Transactions on, Vol. 51, Issue 2, Feb, 220, (2004)
    [153] R. Beyers and R. Sinclair: J. Appl. Phys. 57, 5240 ~1985 (1985)
    [154] S. Wolf: ”Silicon Processing for The VLSI ERA”, second addition,
    Lattice Press, vol. 2,Chapter 3, 2000
    [155] V. Probst, H. Schaber, P. Lippens, L. Van den hove and R. De
    Keersmacker: Appl. Phys.Lett. 52 (1988) 1803
    [156] H. Iwai et al. / Microelectronic Engineering 60 (2002) 157 –169
    [157] Y. Taur, J. Y. C Sun, D. Moy, L. K. Wang, B. Davari, S. P. Klepner
    and C. Y . Ting: IEEETrans. Electron Devices 34 (1987) 575
    [158] C. C. Wang, C. J. Lin and M. C. Chen: J. Electrochem. Soc. 150
    (2003) G557
    [159] A. Lauwers, A. Steegen, M. de Potter, R. Lindsay, A. Satta, H.
    Bender and K. Maex: J. Vac.Sci. & Technol. B 19 (2001) 2026
    [160] C. C. Wang, Y. K. Wu, W.H. Wu and M. C. Chen: Japan Society of
    Applied Physics Vol.44 No. 1A, 2005, pp. 108~113
    [161] M.-A. Nicolet and S. S. Lau,in VLSI Electronics—Microstructure
    Sciences, edited by N. G.Einsprich and G. B. Larrabee ~Academic, New
    York, 1983, Vol. 6, Chap. 6
    [162] T. Ohguro, et al: IEEE Trans, Electron Devices 41, 2305 (1994)
    [163] T. Ohguro, S. Nakamura, M.Koike, T. Morimoto, A. Nishiymam, Y.Usihiku, T. Yoshitomi,M. Ono, M. Saito and H. Iwai: IEEE Trans. Electron Devices 41 (1994) 2305
    [164] C. C. Wang, and M. C. Chen: JJAP, Vol. 45, No. 3A, 2006, pp. 1582-1587
    [165] M. -A. Nicolt and S. S. Lau, in VLSI Electronics: Microstructure Science, vol. 6, Chapter 6, Academic Press, pp. 457, 346, 358, 1983
    [166] F. La Via, C. Spinella, and E. Rimini: Semicond. Sci. technol, Vol. 10, P. 1362, 1995
    [167] H. Jeon, C. A. Sukow, J. W. Honeycutt, G. A. Rozgonyi, and R. J.Nemanich, J. Appl. Phys., vol. 71, no. 9, p.1, 1992
    [168] T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K.Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata,and H. Iwai, IEEE Trans. Electron Devices, vol. 42, no. 5, p. 915, 1995
    [169] J. A. Kittl, Q. Z. Hong, H. Yang, N. Yu, S.B. Samavedam and M. A.Gribelyuk, Thin Solid Films, vol. 332, p. 404, 1998
    [170] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C. P. Chao, H. L. Tsai, S.Krishnan, I. C. Chen, R. H. Havemann, IEDM Tech. Digest 1997, p. 107,1997
    [171] B. A. Julies, in: Corss-sectional Transimission Electron Microscopy of Nickel Silicide Formation, University of the Western Cape, Bellville, 1993
    [172] G.C. Schwartz and K. V. Srikrishnan, “Handbook of semiconductor interconnection technology”, 2nd ed., CRC/Taylor & Francis, Boca Raton, FL, (2006)
    [173]莊耿林, 以霍爾效應量測法對氮化鎵半導體作電性分析(2003)
    [174] E. H. Putley, The Hall potential across an inhomogeneous conductor, Phys. Rev, 79, 1023-24(1950)
    [175] Agarwal, A., Gossmann, H. J., Eaglesham, D., Pelaz, L., Jacobson, D., Haynes, T., Erokhin, Y. E. 1997, Applied physics letters, 71, 3141
    [176] Pawlak, B., Vandervorst, W., Smith, A., Cowern, N. E. B., Colombeau, B. 2005, Applied physics letters, 86, 101913
    [177] Claverie, A., Colombeau, B., Ben Assayag, G., Bonafos, C., Cristiano, F., Omri, M., de Mauduit, B. 2000, Materials Science in Semiconductor Processing, 3, 269
    [178] J. Zhu, T. D. de la Rubia, L. H. Yang, C. Mailhiot, and G. H. Gilmer, Phys. Rev. B 54, 4741 (1996)
    [179] R. Angelucci, F. Cembali, P. Negrini, M. Servidori, and S. Solmi, J. Electrochem. Soc. 134, 3130 (1987)
    [180] P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, J. Appl. Phys. 81, 6031 ~(1997)
    [181] T. E. Haynes, D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 69, 1376 (1996)
    [182] L. Pelaz, M. Jaraiz, G. H. Gilmer, H.-J. Gossmann, C. S. Rafferty, D. J. Eaglesham, and J. M. Poate, Appl. Phys. Lett. 70, 2285 (1997)
    [183] L. Pelaz, G. H. Gilmer, H.-J. Gossmann, C. S. Rafferty, M. Jaraiz, and J. Barbolla, Appl. Phys. Lett. 74, 3657 (1999)
    [184] M. J. Caturla, M. D. Johnson, and T. D. de la Rubia, Appl. Phys. Lett. 72, 2736 (1998)
    [185] Camillo-Castillo, R., Law, M., Jones, K., Lindsay, R., Maex, K., Pawlak, B., McCoy, S. 2006, J. Vac. Sci. Technol., B, 24, 450
    [186] Kim, S. D., Park, C. M., Woo, J. C. S. 2002, Electron Devices, IEEE Transactions on, 49, 457 Aid, S. R., Matsumoto, S., Fuse, G., Sakuragi, S. 2011, physica status solidi (a), 208, 2772
    [187] Chen, Z. H., Shieh, J. M., Dai, B. T., Wang, Y. C., Pan, C. L. Near-infrared Femtosecond Laser-Processed Thin-Film Transistor. Conference on Lasers and Electro-Optics: Optical Society of America; 2005
    [188] Shieh, J. M., Chen, Z. H., Dai, B. T., Wang, Y. C., Zaitsev, A., Pan, C. L. 2004, Applied physics letters, 85, 1232
    [189] Wang, Y. C., Pan, C. L., Shieh, J. M., Dai, B. T. 2006, Applied physics letters, 88, 131104
    [190] Wang, Y. C., Zaitsev, A., Pan, C. L., Shieh, J. M., Chen, Z. H., Dai, B. T. Near-Infrared Femtosecond Laser activation of shallow B and P doped layers. Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on: IEEE; 2005. p. 1372
    [191] Fujita, M., Izawa, Y., Norimatsu, T., Miyanaga, N. Laser wavelength dependences of amorphization and crystalization of Si by femtosecond laser pulses. Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009. European Conference on: IEEE; 2009. p. 1
    [192] Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, P., Förster, E., Geindre, J., Audebert, P. 2001, Nature, 410, 65
    [193] Sundaram, S., Mazur, E. 2002, Nature materials, 1, 217
    [194] Jia, J., Li, M., Thompson, C. V. 2004, Applied physics letters, 84, 3205
    [195] Shieh, J.-M., Chen, Z.-H., Dai, B.-T., Wang, Y.-C., Zaitsev, A., Pan, C.-L. 2004, Applied physics letters, 85, 1232
    [196] Izawa, Y., Izawa, Y., Setsuhara, Y., Hashida, M., Fujita, M., Sasaki, R., Nagai, H., Yoshida, M. 2007, Applied physics letters, 90, 044107
    [197] Wang, Y.-C., Shieh, J.-M., Zan, H.-W., Pan, C.-L. 2007, Optics express, 15, 6982
    [198] Wang, Y.-C., Pan, C.-L., Shieh, J.-M., Dai, B.-T. 2006, Applied physics letters, 88, 131104
    [199] Wang, X., Zheng, H., Tan, C., Wang, F., Yu, H., Pey, K. 2010, Optics express, 18, 19379
    [200] J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev and C. L. Pan, Applied physics letters 85 (7), 1232-1234 (2004)
    [201] A. Agarwal, H. J. Gossmann, D. Eaglesham, L. Pelaz, D. Jacobson, T. Haynes and Y. E. Erokhin, Applied physics letters 71, 3141 (1997)
    [202] B. Pawlak, W. Vandervorst, A. Smith, N. E. B. Cowern and B. Colombeau, Applied Physics Letters 86 (10), 101913-101913-101913 (2005)
    [203] A. Claverie, B. Colombeau, G. Ben Assayag, C. Bonafos, F. Cristiano, M. Omri and B. de Mauduit, Materials Science in Semiconductor Processing 3 (4), 269-277 (2000)
    [204] International Technology Roadmap for Semiconductor, [Online] Available : http://www.itrs.net/
    [205] Camillo-Castillo, M. Law, K. Jones, R. Lindsay, K. Maex, B. Pawlak and S. McCoy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24 (1), 450-455 (2006)
    [206] S. D. Kim, C. M. Park and J. C. S. Woo, Electron Devices, IEEE Transactions on 49 (3), 457-466 (2002)
    [207] E. L. Pankratov, “Redistribution of dopant during microwave annealing of a multilayer structure for production p–n junction,” J. Appl. Phys., vol. 103, no. 6, p. 064 320, Mar. 2008
    [208] T. L. Alford, D. C. Thompson, J.W. Mayer, and N. D. Theodore, “Dopant activation in ion implanted silicon by microwave annealing,” J. Appl. Phys., vol. 106, no. 11, p. 114 902, Dec. 2009
    [209] Y.-J. Lee, F.-K. Hsueh, S.-C. Huang, J. M. Kowalski, J. E. Kowalski, A. T. Y. Cheng, A. Koo, G.-L. Luo, and C.-Y. Wu, “A low-temperature microwave annealing process for boron-doped ultrathin Ge epilayer on Si substrate,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 123–125, Feb. 2009
    [210] J. N. Lee, Y. W. Choi, B. J. Lee, and B. T. Ahn, “Microwave-induced low-temperature crystallization of amorphous silicon thin films,” J. Appl.. Phys., vol. 82, pp. 2918-2921, September 1997
    [211] S. C. Fong, C. Y. Wang, T. H. Chang, and T. S. Chin, “Crystallization of
    amorphous Si film by microwave annealing with SIC susceptors,” Appl. Phys. Lett., vol. 94, 102104, March 2009
    [212] Y. J. Lee, S. S. Chuang, F. K. Hsueh, H. M. Lin, S. C. Wu, C. Y. Wu and T. Y. Tseng,” Dopant activation in single crystalline germanium by low temperature microwave annealing,” IEEE Electron Device Lett., in press.
    [213] Y.J. Lee, Y.L. Lu, F.K. Hsueh, K.C. Huang, C.C. Wan, T.Y. Cheng, M.H. Han, J. M. Kowalski, J. E. Kowalski, D. Heh, H.T. Chuang, Y. Li, T.S. Chao, C.Y. Wu, and F.L. Yang, “3D 65 nm CMOS with 320 oC microwave dopant activation,” IEDM Tech. Dig., pp. 31–34, 2009
    [214] Y.L. Lu, F.K. Hsueh, K.C. Huang, T.Y. Cheng, J. M. Kowalski, J. E. Kowalski, Y.J. Lee, T.S. Chao, and C.Y. Wu, “Nanoscale p-MOS thin film transistor with TiN gate electrode fabricated by low-temperature microwave dopant activation,” IEEE Electron Device Lett., vol. 31, pp. 437–439, May 2010
    [215] B.Chenevier, O. Chaix-Pluchery, P. Gergaud, O. Thomas, R. Madar, F. La Via, Microelectron. Eng. 70 (2003) 166
    [216] O. Akhavan, A. Z. Moshfegh, S. J. Hashemifar, R. Azimirad, Appl. Surf. Sci. 233 (2004) 123
    [217] E. J. Jung, S. W. Jung, H. S. Kim, J. H. Yun, S. H. Cheong, B. H. Kim, G. H. Choi, S. T. Kim, U. In Chung, J. T. Moon, B. I. Ryu, Microelectron Eng. 82 (2005) 449
    [218] O. Akhavan, A. Z. Moshfegh, S. J. Hashemifar, R. Azimirad, Semicond. Sci. Technol. 21 (2006) 1181
    [219] S. Abhaya, G. Amarendra, S. Kalavathi, Padma Gopalan, M. Kamruddin, A. K. Tyagi, V. S. Sastry, C. S. Sundar, Appl. Surf. Sci. 253 (2007) 3799
    [220] C. T. Huang, T. F. Lei, IEEE Trans. Electron. Dev. 44 (4) (1997) 601
    [221] G. Verma, C. Gelatos, S. Talwar, J. C. Bravman, IEEE Trans. Electron. Dev. 49 (1) (2002) 42
    [222] S. K. Saha, R. S. Howell, M. K. Hatalis, Thin Solid Films 347 (1999) 278
    [223] S. K. Zhang, M. Ostling, Crit. Rev. Solid State Mater. Sci. 28 (2003) 1
    [224] T. Ohguro, S. Nakamura, E. Morifuji, M. Ono, T. Yoshitomi, M. Saito, H. S. Momose, and H. Iwai, Tech. Dig. Int. Electron Devices Meet., (1995) 453
    [225] C. Lavoie, F. M. d’Heurle, C. Detavernier, C. Cabral Jr., Microelectron. Eng. 70, 144 (2003)
    [226] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, IEEE Electron Device Lett., 22, 568 (2001)
    [227] D. X. Xu, S. R. Das, C. J. Peters, and L. E. Erickson, Thin Solid Films, 326, 143 (1998)
    [228] W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, J. Appl. Phys., 91, 2901 (2002)
    [229] P. R. Besser, A. Lauwers, N. Roelandts, K. Maex, W. Blum, R. Alvis, M. Stucchi, M. De Potter. Res. Soc. Symp. Proc 514(1998) 375
    [230] K. Maex, A. Lauwers, P. Besser, E. Kondoh, M. de Potter, A. Steegen, IEEE Trans. Electron Dev. 7 (1999) 46
    [231] W. Huang, L. Zhang, Y. Gao, H. Jin, Microelectron. Eng. 83, 345 (2006)
    [232] K. I. Yoon, O. S. song, Kor. J. Mater. Res., 16, 9 (2006)
    [233] L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee, F. M. Pan: J. Vac. Sci. Technol. A 18 (2000) 1176
    [234] L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee, F. M. Pan: J. Vac. Sci. Technol. A 18 (2000) 1176
    [235] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, L. Chan: IEEE Electron Device Lett. 21 (2000) 566
    [236] T. H. Hou, T. F. Lei, T. S. Chao: IEEE Electron Device Lett. 20 (1999) 572
    [237] R. T. P. Lee, D. Z. Chi, M. Y. Lai, N. L. Yakovlev, S. J. Chua: J Electrochem. Soc. 151 (2004) 642
    [238] D. Mangelinck, J. Y. Dai, J. S. Pan, S. K. Lahiri: Appl. Phys. Lett. 75 (1999) 1736
    [239] W. Huang, L. C. Zhang, Y. Z. Gao, H. Y. Jin: Microelectron. Eng. 84 (2007) 672
    [240] C. T. Wu, W. H. Lee, S. C. Chang, Y. L. Cheng , Y. L. Wang: Nanoscience and Nanotechnology Lett. 3. (2011) 272
    [241] X. W. Yue, L. C. Zhang, Y. Z. Gao, H. Y. Jin: Microelectron. Eng. 85 (2008) 1723
    [242] C. Lavoie, C. Detavernier, C. Cabrljr,. F. M. d’Heurle, A. J. Kellock, J. Jordan-Sweet, J. M. E. Harper: Microelectron. Eng. 83 (2006) 2042

    下載圖示 校內:2015-12-19公開
    校外:2015-12-19公開
    QR CODE