| 研究生: |
楊智堯 Yang, Chih-Yao |
|---|---|
| 論文名稱: |
水工結構物對抽水井流場之影響 Effects of hydraulic structures on pumping sump flows |
| 指導教授: |
黃煌煇
Huang, Huang-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 抽水井 、流場 、導流體 、抗渦板 、旋轉角 |
| 外文關鍵詞: | sump intake, flow field, suction structure, baffle wall, suction angle |
| 相關次數: | 點閱:180 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大型泵被廣泛應用在汙水處理廠,防洪抽水站或電廠循環冷卻水系
統中,整個抽水系統又涵蓋許多水工結構物,非常複雜。目前較廣為參
考之工程規範如美國標準(HI)及英國標準(BHRA)等,惟規範往往以理想
條件所制定,不符合現實需求,當增加一些抽水井必要結構物時,則需
進行水工模型試驗,以確保安全性及了解實際的流場變化。
本文之研究以台電核二廠抽水井結構設計作為試驗模型,三維流場
以超音波都卜勒流速儀(ADV)量測,將進入抽水井前之流況分為均勻流及
側向流二種進行探討。在吸入口下方設置不同水下導流體,藉由轉速計
觀測吸入口喉部旋轉角度來探討其影響程度以及觀察自由表面渦漩的出
現頻率。此外也針對抗渦板的功效與其位置關係進行探討。
試驗結果顯示在均勻流況下,流場分布頗為穩定;側向流下平均紊
流強度為均勻流的1.5 至2 倍。大致上紊流強度與吸入口的距離成正比。
抗渦板對自由表面渦漩的抑止有很大的作用,試驗發現設置最佳位置為
水面中間,抗渦板之功效與沒水深成反比。三角錐形導流體對吸入管內
流場有穩定的作用,使其喉部旋轉角度降低,而不同角度導流體的試驗
結果差異不大,以上之結果將可供未來改善工程之參考。
Large-scale pumps have been extensively used in sewage treatment plants, flood control pumping stations, and circulating cooling water system of electric power plants.
The whole system contains lots of complicated hydraulic structures. While designing the sump, the project technical specification such as Unite States Standard (HI) and Britain’s standard (BHRA), etc. are widely consulted at present. However, those project technical specifications are established in ideal simple conditions, while the extra structures increasing, it still has to do the physical modeling test to ensure the security and understand
the variation in flow fields.
The experimental model of present paper is designed according to the second nuclear power plant of Taiwan. Detailed three-dimensional measurements of the approach flow in the pump sump were obtained by using an Acoustic Doppler Velocimeter(ADV), discussion on uniform and non-uniform flow in front of the suction pipe. The swirl angles
at the throat of the suction pipe were also measured by swirl meter to investigate effects of different suction structures and observed the frequency of free surface vortices appearance. Besides, also discussed the relationship between the effects upon baffle wall and it’s place.
The experimental results show that the pump-approach flow distributions are stable with uniform flow. The average turbulent intensity with non-uniform flow increased 1.5 to 2 times compared to uniform flow. Generally speaking, turbulent intensity is directly proportional to the distance of suction pipe. The baffle wall performed very well in terms of mitigating the intensity and appearing frequency of free surface, and the best installation place is in the middle of free surface. The suction structure is able to improve the flow condition. The test result is almost no difference to diverse suction structure angles. The about mentioned results would be referred to the important of intake structure in the future.
1. Ansar, M., Nakato, T., 2001, “Experimental Study of 3D Pump-Intake Flow with and
ithout Cross Flow”, J. of Hydr. Eng., ASCE, vol.127, No.10, pp. 825-834.
2. Ansar, M., 1997, “Expermental and Theoretical Studles of Pump-approach Flow
Distributions at Water Intakes” PhD. In Civil and Environmental Engineering in the
Graduate College of the University of Iowa.
3. Arboleda, G., 1996, “Effects of Approach Flow Conditions on Pump Sump Design”, J.
of Hydrulic Engeneer, ASCE, vol.122, No.9, pp. 489-494.
4. De Siervi, F., Viguier, H. C., Greitzer, E.M., and Tan C.S. 1982, “Mechanisms of
Inlet-Vortex Formation.”, J. of Fluid Mech, vol. 124, pp. 173-207.
5. Gulliver, J.S., and Rindel, A,J., 1987, ”Weak Vortices at Vertical Intakes”, J. of Hydr.
Eng., ASCE, vol.113, No.9, pp. 1101-1116.
6. Hecker, G.E., 1987, “Fundamentals of Vortex Inlet Flow”, IAHR Hydraulic Structures
Design Manual on Swirl Flow Problems at Intakes, edited by J.Knauss,
Balkema/Rotterdam, pp. 13-38.
7. Hydraulic Institute Standards, 1978, “Centrifugal, Rotary and Reciprocating Pumps”,
14 th. Ed., HIS, Cleveland, Ohio., 1998. 8. Jain, A.K., Raju, K.G.R. ,and Garde, R.J.,
“Vortex Formation at Vertical Pipe Intakes”, J. of Hydr. Div., ASCE, vol.104, No.10,
pp. 1429-1445.
8. Hwang., Lin,. Yang., Hwang., 2006, “Effect of Suspended Structures to Pump Sump
Flows”, ICHD, Hydrodinamics VII, volume I, pp.73-80.
9. Nakato, T., 2003, “development of suction scoops for midamerican Energy company’s
george neal north circulating Water pump intake structures ” ,IIHR Report No. 395,
Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa.
10. Padmanabhan, M., 1984, “Air Ingestion Due to Free Surface Vortices”, J. of Hydrulic
Engeneer ASCE, vol.110,No.12, pp. 1855-1859.
11. Padmanabhan, M., and Hecker, G. E., 1984, “Scales Effects in Pump Sump Models”, J.
of Hydr. Eng., ASCE, vol.110, No.11, pp. 1540-1556.
12. Peterson, I.S., and R.M. Noble, 1982, “The Right Approach”, Proceedings of the
IAHR-Symposium on Operating Problems of Pump Stations and Power Plants.
13. Prosser, M.J., 1977, “The Hydraulic Design of Pump Sumps and Intakes”, British
Hydromech. Res. Assn., and Constr. Industry Res. and Info. Assn., Cranfield, England.
14. Quick, M. C., 1970, ”Efficiency of Air-Entraining Vortex Formulation”, J. of Hydr.
Div., ASCE, vol.96, No.7, pp. 1403-1416.
15. Knauss,J., 1987, “Swirling Flow Problems at Intakes”, Technical University of munich,
Obernach, FR Germany.
16. Tullis, J.P., 1979, “Modeling in Design of Pumping Pits”, J. of Hydr. Div., ASCE,
vol.105(9), 1053-1063.
17. Von Karman,T., 1912, “Uber den Mechanismuss des Windersstandes den ein bewegter
Korper in einen Flussigkeit Erfahart, ” Nachrichten der K. Gesellschaft der
Wissenschaften zu Gottingen, pp.547-556.
18. 林仲伯, 2004, “協和電廠進水口閘門對於抽水井流場影響之研究” 國
立成功大學水利及海洋工程所,碩士論文.