簡易檢索 / 詳目顯示

研究生: 黃俞強
Huang, Yu-Chiang
論文名稱: 核三廠防海嘯牆受力之研究
Study on tsunami forces on seawall at Maanshan Nuclear Power Plant
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 79
中文關鍵詞: COMCOTFLOW-3D耦合模式FEMA P646
外文關鍵詞: COMCOT, FLOW-3D, Maanshan Nuclear Power Plant
相關次數: 點閱:69下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來所發生的2004年12月26日南亞大海嘯以及2011年3月11日日本海嘯,許多沿海城市與人造設施遭到摧毀,造成人民生命財產嚴重損失,這也使得更多的專家學者及政府相關部門正視海嘯問題。在臺灣每年皆會發生因颱風帶來的風災、洪災等,而比之颱風、地震等天然災害,海嘯發生機率相對較小,但海嘯卻是臺灣未來不得不審慎小心的一道課題。
    本研究使用COMCOT(二維淺水波方程)模擬核三廠於海溝型海嘯侵襲下之水體運動,並探討「海嘯設計基準水位+ 6米」所對應之震源條件以及其溯升溢淹情形。為了達到「海嘯設計基準水位+ 6米」之條件,選擇放大地震矩規模情境的地震參數,並提出兩種震源設定方法。另曼寧係數亦為海嘯溯升溢淹重要的參數之一,本研究以核三廠為例,進行不同曼寧係數的數值試驗。最後為了獲得更高精度的溯升溢淹情形,使用耦合COMCOT(二維淺水波方程)和FLOW-3D(三維Navier-Stokes方程)的數值模式進行模擬。
    汪洋大海具有巨大的熱容量,而核能電廠為了排放運轉過程產生的廢熱,大多選址於靠近海洋處,以利廢熱的排放;但同時也就得面臨海嘯來襲之威脅。本研究依據規範NOAA FEMA P646(2012)整理出海嘯作用下必須考量之作用力,估算於二維海嘯模式(COMCOT)下所假設之防海嘯牆受力情形,並與耦合模式模擬出之受力結果比較,藉以了解兩者之差異。

    This study compared the forces of the tsunami seawall at the Maanshan Nuclear Power Plant calculated by a two-dimensional tsunami model (COMCOT) and a three-dimensional coupling model (FLOW-3D).The T02 Manila Trench seismic sources proposed by Wu (2011) were adopted as the earthquake parameters in this study. Two scenarios were developed based on the instructions announced by the Atomic Energy Council, Executive Yuan, on November 5, 2012, stating that seawalls or concrete barricades must be built 6 m above the current water level for tsunami designs. In the first scenario, a moment magnitude scale (MMS) of 8.53 and a Manning’s coefficient of 0.025 were adopted to compare the forces of the tsunami seawall of the Maanshan Nuclear Power Plant produced by the COMCOT coupled with the current tsunami seawall regulation (FEMA P-646, 2012) and the FLOW-3D. In the second scenario, a fixed Manning’s n-value was used in combination with the MMS equations proposed by Hanks and Hanamori (1979) and Aki (1966) to expand the MMS to 8.59. These parameters were used to compare the stress conditions of the tsunami seawall of the Maanshan Nuclear Power Plant produced by the COMCOT coupled with the current tsunami seawall regulation (FEMA P-646, 2012) and the FLOW-3D.
    In Scenario 1 (Mw=8.53), the maximum forces of the second wave produced by the COMCOT was significantly greater than the stress results proposed by the FLOW-3D at a similar time. In Scenario 2 (Mw=8.59),Mw was expanded to increase the tsunami-inundated area of the COMCOT to the height of the design tsunami plus six meters. The maximum stress of the first wave produced by the FLOW-3D was greater than that produced by the COMCOT, and the stress of the second wave produced by the FLOW-3D was smaller than that produced by the COMCOT, suggesting that the COMCOT and the FLOW-3D produced opposing stress conditions for the first and second waves.
    The reasons for the differences between the two models could be because (1) the FLOW-3D adopted dimensionless friction coefficients for calculating friction(Cf) and constants were used in the simulations. By comparison, the COMCOT adopted the Manning’s coefficient (n) for calculating friction. Therefore, when the number of friction coefficients is limited to one, the friction term in the shallow water equation of the FLOW-3D could not be fully represented in the COMCOT. (2) The SWEs in the FLOW-3D use the fractional area/volume obstacle representation (FAVOR) method to reflect the spatial changes in terrain depth. Therefore, the FLOW-3D may produce more accurate results when processing complex terrains.

    摘要 I 誌謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XVII 符號表 XIX 第一章 緒論 1 1-1研究動機與目的 1 1-2海嘯概述 3 1-3文獻回顧 5 1-4本文架構 9 第二章 數值模式 10 2-1 二維海嘯模式(COMCOT) 10 2-1-1 模式簡介 10 2-1-2 統御方程式 11 2-1-3 有限差分法 13 2-1-4 巢狀網格系統 18 2-1-5 移動邊界 19 2-1-6 斷層參數設定 20 2-2 三維數值模式(FLOW-3D) 22 2-2-1 統御方程式 23 2-3 耦合模式 24 2-3-1 耦合模式之建置 25 2-3-2 地形資料處理 27 2-3-3 計算域和網格的建置 27 2-3-4 耦合邊界的處理 27 第三章 研究方法與過程 29 3-1 海嘯地震情境一 (n=0.025、 =8.53) 37 3-2 海嘯地震情境二 (n=0.025、 =8.59) 46 3-3 海嘯作用力 47 3-3-1 現行防海嘯牆規範FEMA P646(2012) 48 3-3-2 二維海嘯模式防海嘯牆之建置及受力計算方法 53 第四章 核三廠防海嘯牆受力結果 57 4-1 海嘯地震情境一防海嘯牆受力結果 59 4-2 海嘯地震情境二防海嘯牆受力結果 62 4-3二維海嘯模式與耦合模式於防海嘯牆受力差異 66 第五章 結論與建議 73 5-1 結論 73 5-2 建議 74 參考文獻 76

    1. Aki, K. (1966), Generation and Propagation of G Waves from the Niigata Earthquake of June 16, 1964: Part 1. A Statistical Analysis.
    2. ASCE 7-10 (2013), Minimum Design Loads for Buildings and Other Structures.
    3. Chen, Y. L. & Hsiao, S. C. (2016), Generation of 3D Water Waves Using Mass Source Wavemaker Applied to Navier-Stokes Model, Coastal Engineering, Vol. 109, pp. 76-95.
    4. Cho, Y. S. (1995). Numerical simulations of tsunami and runup.Doctoral Dissertation, Cornell University.
    5. COMCOT User Manual (2007), Cornell University.
    6. Costal Construction Manual (2011), FEMA P-55, Vol. 2.
    7. Cullen, M. (2006), A Mathematical Theory of Large-Scale Atmospheric/Ocean Flow, Imperial College Press, London.
    8. Dutykh, D. (LAMA), Poncet, R. (CMLA) & Dias, F. (CMLA) (2011), The VOLNA Code for the Numerical Modelling of Tsunami Waves: Generation, Propagation and Inundation. (DOI: 10.1016/j.euromechflu.2011.05.005).
    9. Gonzalez, F. I., LeVeque, R. J., Chamberlain, P., Hirai, B., Varkovitzky, J. & George, D. .L (2011), Validation of the GeoClaw Model.
    10. Guidelines for Design of Structures for Vertical Evacuation of Tsunamis (2008), NOAA FEMA P646.
    11. Guidelines for Design of Structures for Vertical Evacuation of Tsunamis (2012), NOAA FEMA P646.
    12. Hanks, T. C. & Kanamori, H. (1979), A Moment Magnitude Scale, Journal of Geophysical Research B, Vol. 84(B5), pp. 2348-2350.
    13. Huang, Z., Wu, T. R., Tan, S. K., Megawati, K., Shaw, F., Liu, X. & Pan, T. C. (2009), Tsunami Hazard from the Subduction Megathrust of the South China Sea: Part II. Hydrodynamic Modeling and Possible Impact on Singapore, Journal of Asian Earth Sciences, Vol. 36(1), pp. 93-97.
    14. Imamura, F., Ahmet Cevdet Yalciner, A.C. & Ozyurt, G. (2006), TUNAMI MODELLING MANUAL.
    15. JSCE (2006), Tsunami Assessment Method for Nuclear Power Plants in Japan, Japan Society of Civil Engineers (JSCE).
    16. Kim, K. O., Choi, B. H., Pelinovsky E. & Jung, K.T. (2013), Three-Dimensional Simulation of 2011 East Japan-off Pacific Coast Earthquake Tsunami Induced Vortex Flows in the Oarai Port, Journal of Coastal Research, pp. 284-289.
    17. Koshimura, S., Oie, T., Yanagisawa, H. & Imamura, F. (2009), Developing Fragility Functions for Tsunami Damage Estimation Using Numerical Model and Post-Tsunami Data from Banda Aceh, Indonesia Coast Eng. J., Vol. 51(3), pp. 243-273.
    18. Kotani, M., Imamura, F. & Shuto, N. (1998), Tsunami Run-up Simulation and Damage Estimation by Using GIS, Proceedings of Coastal Engineering, JSCE, pp. 356-360.
    19. Liu, P. L. F., Cho, Y. S., Yoon, S. B. & Seo, S. N. (1995), Numerical Simulations of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii, In Tsunami: Progress in Prediction, Disaster Prevention and Warning (pp. 99-115), Springer Netherlands.
    20. Liu, Y., Shi, Y., Yuen, D. A., Sevre, E. O., Yuan, X. & Xing, H. L. (2009), Comparison of Linear and Nonlinear Shallow Wave Water Equations Applied to Tsunami Waves over the China Sea, Acta Geotechnica, Vol. 4(2), pp. 129-137.
    21. Nielsen, O., Roberts, S., Gray, D., McPherson, A. & Hitchman, A. (2005), Hydrodynamic Modelling of Coastal Inundation, MODSIM 2005 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia & New Zealand, pp. 518-523
    22. Okada, Y. (1985), Surface Deformation due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America, Vol. 75(4), pp. 1135-1154.
    23. Palermo, D., Nistor, I., Nouri, Y. & Cornett, A. (2009), Tsunami Loading of Near-Shorline Structure: a Primer, NRC Research Press, Candian Journal of Civil Engineering, Vol. 36(11), pp. 1804-1815.
    24. Synolakis, C.E. (1987):The runup of solitary waves.J. Fluid Mech., 185, 523-545.
    25. Wang, X.M., (2009). User manual for COMCOT version 1.7.
    26. Wang, X. & Liu, P. L. F. (2007), Numerical Simulations of the 2004 Indian Ocean Tsunamis - Coastal Effects, Journal of Earthquake and Tsunami, Vol. 1(03), pp. 273-297.
    27. Wells, D.L. and K.J. Coppersmith, (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America. 84(4): p. 974-1002.
    28. Wu, T. R., Chen, P. F., Tsai, W. T. & Chen, G. Y. (2008), Numerical Study on Tsunamis Excited by 2006 Pingtung Earthquake Doublet.
    29. Yen, Y. T. & Ma, K. F. (2011), Source-Scaling Relationship for M 4.6–8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan.
    30. Yoon, Sung B., (2002). Propagation of distant tsunami over slowly varying topography. Journal of Geophysical Research: Oceans 107: p.4.1-4.11
    31. 吳祚任 (2011),「台灣潛在高於預期之海嘯模擬與研究」,行政院國家科學委員會。
    32. 「核電廠抗地震/海嘯等天然災害之現況及風險評估管制研究」,104年度,行政院原子能委員會。
    33. 蕭士俊 (2014),「海嘯浪高波傳機率模型之建置研究」,行政院原子能委員會。
    34. 蕭士俊 (2015),「海嘯浪高波傳機率模型之建置研究」,行政院原子能委員會。
    35. 洪李陵等人 (2016),「105年核電廠超越設計地震之地震安全管制技術研究-海嘯源模擬分析管制驗證技術」,行政院原子能委員會。
    36. 「核三廠防海嘯能力提升評估規劃報告書」,104年度,台灣電力公司。

    無法下載圖示 校內:2022-09-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE