| 研究生: |
黃仁煜 Huang, Jen-Yu |
|---|---|
| 論文名稱: |
建構適用於軋鋼廠感應馬達運轉維護之模擬與監測研究 Simulation and Monitoring Study of Induction Motor Operating Maintenance for Rolling Steel Factories |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 感應馬達 、小波轉換 、帕克轉換 |
| 外文關鍵詞: | Induction Motor, Wavelet Transform, Park Transform |
| 相關次數: | 點閱:106 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用模擬與量測技術研發軋鋼廠感應馬達運轉之維護系統,其中視覺化模擬程式所具有完備之模擬元件模組,輔以其優良之運算效能,可進而建立感應馬達運轉模擬系統。另藉由小波轉換之極佳時頻定位能力,配合帕克轉換於動態信號之座標轉置,可對於軋鋼廠之變壓器激磁湧入電流擾動、定子電壓開路及三相不平衡電壓等各項暫態擾動,予以進行感應馬達之運轉模擬與異常狀態檢視,同時並運用圖控程式語言搭配硬體量測與資料擷取模組,輔以數位信號分析演算程式,完成感應馬達運轉監測系統之建構。而為驗證本文所提方法之可行性,並另經由量測信號之分析及對照運轉模擬之結果,以佐證本文之系統確可掌握馬達運轉狀態,並可進而協助軋鋼廠區感應馬達運轉維護效能之增進,對於軋鋼生產效益之提昇,亦應有其高度助益。
In this study, the simulation and measurement technique is integrated to apply for the design of operating maintenance system of rolling steel factories. In the method, thanks to the complete visualization simulation module along with the satisfactory computation performance, the wavelet transform as well as Park’s transform were carried out to monitor the transformer inrush current and various disturbances of distribution systems. Meanwhile, the virtual instrument system aided by hardware measurement modules and digital signal processing techniques were also embedded into the proposed system, by which the measurement data were analyzed thoroughly. From these test outcomes, they are deemed useful to support the feasibility of this proposed approach.
[1] http://www.csc.com.tw
[2] http://140.111.1.22/moecc/rs/pkg/tedc/tedc1.htm
[3] http://www.mathworks.com/product/matlab
[4] http://www.mathworks.com/product/simulink
[5] http://www.ni.com/labview/
[6] C. M. Ong, Dynamic Simulation of Electric Machinery UsingMatlab/Simulink, Prentice Hall, Upper Saddle River, New Jersey, U.S.A., 1997.
[7] B. K. Bose, Modern Power Electronics and AC Drives, Prentice-Hall, New York, U.S.A., 2002.
[8] S. Chapman, Electric Machinery Fundamentals, Fourth Edition, McGraw Hill, New York, U.S.A., 2005.
[9] S. J. Huang , C. T. Hsieh and C. L. Huang, “Application of Morlet Wavelets to Supervise Power System Disturbances”, IEEE Transactions on Power Delivery, Vol. 14, No. 1, pp. 235-243, January 1999.
[10] S. J. Huang and C. T. Hsieh, “Coiflet Wavelet Transform Applied to Inspect Power System Disturbances-Generated Signals”, IEEE Transactions on Aerospace and Electronics Systems, Vol. 38, No. 1, pp. 204-210, January 2002.
[11] S. Mallat, A Wavelet Tour of Signal Processing, Second edition, Academic Press, San Diego, California, USA, 2000.
[12] I. Daubechies, The lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.
[13] I. Daubechies, “The Wavelet Transform, Time-frequency Localization and Signal Analysis”, IEEE Transactions on Information Theory, Vol. 36, No. 5, pp. 961-1005, September 1990.
[14] S. A. Saleh and M. A. Rahman, “Modeling and Protection of a Three-Phase Power Transformer Using Wavelet Packet Transform”, IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp. 1409-1416, April 2005.
[15] O. A. S. Youssef, “A Wavelet-Based Technique for Discrimination between Faults and Magnetizing Inrush Currents in Transformers”, IEEE Transactions on Power Delivery, Vol. 18, No. 1, pp. 170-176, January 2003.
[16] S. G. Abdulsalam, W. Wu and V. Dinavahi, “Modeling and Simulation of Three-Phase Transformers for Inrush Current Studies”, IEE Proceedings Generation, Transmission and Distribution, Vol. 152, No. 3, pp. 328-333, May 2005.
[17] IEEE Standard Digital Interface for Programmable Instrumentation, ANSI/IEEE Std. 488.1-1987.
[18] IEEE Standard for Higher Performance Protocol for the Standard Digital Interface for Programmable Instrumentation, IEEE Std. 488.1-2003.
[19] S. J. Huang and C. W. Lu, “Enhancement of Digital Equivalent Voltage Flicker Measurement via Continuous Wavelet Transform”, IEEE Transactions on Power Delivery, Vol. 19, No. 2, pp. 663-670, April 2004.
[20] M. M. Eissa, “A Novel Digital Directional Transformer Protection Technique Based on Wavelet Packet”, IEEE Transactions on Power Delivery, Vol. 20, No. 3, pp. 1830-1836, July 2005.
[21] S. A. Saleh and M. A. Rahman, “Real-Time Testing of A WPT-Based Protection Algorithm for Three-Phase Power Transformers”, IEEE Transactions on Industry Application, Vol. 41, No. 4, pp. 1125-1132, July-August 2005.
[22] S. A. Saleh and M. A. Rahman, “A New Transient Model for Three-Phase Power Transformers Using A Wavelet Filter Bank”, IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp. 1409-1416, April 2005.
[23] S. A. Saleh and M. A. Rahman, “Modeling and Protection of A Three-Phase Power Transformers Using Wavelet Packet Transform”, IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp. 1273-1282, April 2005.
[24] P. L. Mao and R. K. Aggarwal, “A Novel Approach to The Classification of The Transient Phenomena in Power Transformers Using Combined Wavelet Transform and Neural Network”, IEEE Transactions on Power Delivery, Vol. 16, No. 4, pp. 654-660, October 2001.
[25] M. Gomez-Morante and D. W. Nicoletti, “A Wavelet-Based Differential Transformer Protection”, IEEE Transactions on Power Delivery, Vol. 14, No. 4, pp. 1351-1358, October 1999.
[26] L. Debnath, Wavelet Transforms and Time-Frequency Signal Analysis, Birkhäuser, Boston, U.S.A., 2001.
[27] G. W. Johnson and R. Jennings, LabVIEW® Graphical Programming, Third Edition, McGraw Hill, New York, U.S.A., 2001.
[28] R. Bitter, T. Mohiuddin and M. Nawrocki, LabVIEWTM Advanced Programming Techniques, CRC Press LLC, New York, U.S.A., 2001.
[29] 蕭子健,王智昱,儲昭偉,虛擬儀控程式設計LabVIEW 7X,高立圖書有限公司,民國九十三年三月
[30] P. Vas, Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines, Oxford University Press Inc., New York, U.S.A., 1993.
[31] G. C. Stone, E. A. Boulter, I. Culbert and H. Dhirani, Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair, Wiley-IEEE Press, New Jersey, U.S.A., 2004.
[32] M. Eltabach, A. Charara and I. Zein, “A Comparison of External and Internal Methods of Signal Spectral Analysis for Broken Rotor Bars Detection in Induction Motors”, IEEE Transactions on Industrial Electronics, Vol. 51, No. 1, pp. 107-121, February 2004.
[33] S. M. A. Cruz and A. J. M. Cardoso, “Stator Winding Fault Diagnosis in Three-Phase Synchronous and Asynchronous Motors, by The Extended Park’s Vector Approach”, IEEE Transactions on Industry Applications, Vol. 37, No. 5, pp. 1227-1233, September-October 2001.
[34] H. Nejjari and M.E.H. Benbouzid, “Monitoring and Diagnosis of Induction Motors Electrical Faults Using A Current Park’s Vector Pattern Learning Approach”, IEEE Transactions on Industry Applications, Vol. 36, No. 3, pp. 730-735, May-June 2000.
[35] A. J. Marques Cardoso, S. M. A. Cruz and D. S. B. Fonseca, “Inter-Turn Stator Winding Fault Diagnosis in Three-Phase Induction Motors, by Park’s Vector Approach”, IEEE Transactions on Energy Conversion, Vol. 14, No. 3, pp. 595-598, September 1999.
[36] G. Didier, E. Ternisien, O. Caspary and H. Razik, “Fault Detection of Broken Rotor Bars in Induction Motor Using A Global Fault Index”, IEEE Transactions on Industry Applications, Vol. 42, No. 1, pp. 79-88, January-February 2006.
[37] W. W. Tan and H. Huo, “A Generic Neurofuzzy Model-Based Approach for Detecting Faults in Induction Motors”, IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1420-1427, October 2005.
[38] J. Ilonen, J. K. Karmarainen, T. Lindh, J. Ahola, H. Kalviainen and J. Partanen, “Diagnosis Tool for motor Condition Monitoring”, IEEE Transactions on Industry Applications, Vol. 41, No. 4, pp. 963-971, July-August 2005.
[39] A. M. Knight and S. P. Bertani, “Mechanical Fault Detection in A Medium-Sized Induction Motor Using Stator Current Monitor”, IEEE Transactions on Energy Conversion, Vol. 20, No. 4, pp. 753-760, December 2005.
[40] G. R. Bossio, C. H. De Angelo, G. O. Garcia J. A. Solsona and M. I. Valla, “Effect of Rotor Bar and End-Ring Faults over The Signals of A Position Estimation Strategy for Induction Motors”, IEEE Transactions on Industry Applications, Vol. 41, No. 4, pp. 1005-1012, July-August 2005.
[41] B. Mirafzal and N. A. O. Demerdash, “Effects of Load Magnitude on Diagnosing Broken Bar Faults in Induction Motors Using The Pendulous Oscillation of The Rotor Magnetic Field Orientation”, IEEE Transactions on Industry Applications, Vol. 41, No. 3, pp. 771-783, May-June 2005.