| 研究生: |
姚智榮 Yeu, Dee-Lun |
|---|---|
| 論文名稱: |
微波介電陶瓷材料(1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之研發與無線通訊高頻濾波器之應用 Studies on the Dielectric Ceramic (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 and Associtaed Applications on High-Frequency Filters for Wireless Communications |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 微波介電陶瓷材料 、燒結促進劑 、帶通濾波器 |
| 外文關鍵詞: | (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9–y(Ca0.8Sr0.2)TiO3, ZnMoO4, CuO, microwave dielectric ceramics, band-pass filter |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目標分三部分,第一部份將引進低損耗的介電材料(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9,為期望τ_f=0,添加具有正值共振頻率溫度漂移係數的材料(Ca0.8Sr0.2)TiO3(+991 ppm/℃),我們經由實驗得知微波介電陶瓷材料0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3在燒結溫度1375℃時,持溫4小時,擁有最佳微波特性: τ_f=-4.67 ppm/℃、ε_r=29.21、Q×f =317000GHz(at8.1GHz)。
第二部分使用第一部分所得之結果分別添加燒結促進劑ZnMoO4與CuO探討液相對微波特性的影響。由實驗結果得知添加0.5wt%的ZnMoO4可有效降低燒結溫度至1300℃(下降約75℃)。在燒結溫度1300℃持溫4小時下可得到最佳的可得最佳微波特性:τ_f=0ppm/℃、ε_r=30.8、Q×f =156000GHz(at7.59GHz)。而添加0.5wt%的CuO可有效降低燒結溫度至1325℃。(下降約50℃)。在燒結溫度1325℃持溫4小時下可得到最佳微波特性:τ_f=-2.28ppm/℃、ε_r=31.1、Q×f =289000GHz(at7.61GHz)。
最後,設計及製作一操作在2.4GHz的微帶線帶通濾波器,並實作於FR-4、Al2O3、自製基板0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3上,0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO。由量測的結果得知,利用高介電係數及低損耗的材料做為電路基板時,能達到縮小面積以及具有更好的濾波特性。
The microwave dielectric properties and microstructures of (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9 –y(Ca0.8Sr0.2)TiO3 prepared by using the conventional solid-state were analyzed. The best result was ε_r=29.21, Q×f=317,000 at 7.61GHz, τ_f=-4.67ppm/℃ for y = 0.7 sintered at 1375℃ for 4 hr. Sintering aids were added to the system of the materials and the result showed reduction on the sintering temperature could be obtained by 75℃ and 50℃ for 0.5wt% ZnMoO4 and 0.5wt% CuO, respectively. Finally, 2.4GHz band-pass filters were fabricated on the substrates of the proposed materials. The measured filter properties were close to simulated results and measured insertion loss was 0.94dB, a great advantage over the substrates of FR4 and Al2O3.
[1] H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss," Journal of the European Ceramic Society, vol. 23, pp. 2485-2488, 2003.
[2] M. T. Sebastian, Dielectric materials for wireless communication: Elsevier Science, 2008.
[3] Joe_Taiwan. (2010, 印刷電路板與防電磁干擾設計 Printed Circuit Board (PCB) & EMC. Available: http://ssnt-tech.com/forum_det.php?action=view&id=79
[4] 李洵穎. (2009, FR-4銅箔基板. Available: http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=10&id=0000120967_TLRL9IK059IQB884HIKRY
[5] yangzhaowu. (2012, LED封裝領域用陶瓷基板現狀與發展簡要分析. Available: http://www.ledinside.com.tw/knowledge/20120514-21055.html
[6] M. T. Sebastian, "Dielectric materials for wireless communication," ed, 2008, pp. 1-3.
[7] xshanly. (2008, 微波频率合成技术-下. Available: http://wenku.baidu.com/view/ea9be84bcf84b9d528ea7a86.html
[8] K. Wakino, K. Minai and H. Tamura, "Microwave Characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators," Journal of the American Ceramic Society, vol. 67, pp. 278-281, 1984.
[9] C.-L. Huang and J.-Y. Chen, "High-Q Microwave Dielectrics in the (Mg1−xCox)2TiO4 Ceramics," Journal of the American Ceramic Society, vol. 92, pp. 379-383, 2009.
[10] L. Bing-Jing, C. Jhih-Yong, H. Guan-Sian, J. Chang-Yang, and H. Cheng-Liang, "Dielectric properties of B2O3-doped 0.92(Mg0.95Co0.05)2TiO4-0.08(Ca0.8Sr0.2)TiO3 ceramics for microwave applications," Journal of alloys and compounds vol. vol. 505, pp. pp. 291-296, 2010
[11] 谢志鹏 and 刘冠伟, "通过浸渗坯体引入烧结助剂制备半透明氧化铝陶瓷的方法," CN102093037 B, 2013.
[12] D. C. Sun, S. Senz and D. Hesse, "Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions," J. Eur. Ceram. Soc., vol. 26, pp. 3181-3190, 2006.
[13] B.-J. Li, S.-Y. Wang, C.-Y. Chiu, S.-H. Lin, and Y.-B. Chen, "Dielectric properties and mixture behavior of y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3 ceramic system at microwave frequency," Journal of Alloys and Compounds, vol. 661, pp. 357-362, 2016.
[14] S. Cong-Zhi and L. Bing-Jing, "Study on Microwave Dielectric Material of (1-y)(Mg0.95Ni0.05)4(Nb1-xTax)2O9-y(Ca0.8Sr0.2)TiO3 and Application for Wireless Communication," 2014.
[15] T.-C. Hsieh and B.-J. Li, "Improvement of Corundum-structured Dielectric Ceramic Material Mg4Ta2O9 with Mg2+ substituted by different doping ion and study," 2015.
[16] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure-microwave property in(SrxCa(1-x))n+1TinO3n+1," Journal of the European Ceramic Society vol. 21, pp. 1723-1726, 2001.
[17] J. Guo, D. Zhou, H. Wang, and X. Yao, "Microwave dielectric properties of (1 − x)ZnMoO4–xTiO2 composite ceramics," Journal of Alloys and Compounds, vol. 509, pp. 5863-5865, 2011.
[18] D. Li, H. Wang, Z. He, Z. Xiao, R. Lei, and S. Xu, "Effect of CuO addition on the sintering temperature and microwave dielectric properties of CaSiO3–Al2O3 ceramics," Progress in Natural Science: Materials International, vol. 24, pp. 274-279, 2014.
[19] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina," Journal of the American Ceramic Society, vol. 80, pp. 1885-1888, 1997.
[20] W. J. Huppmann. and G. Petzow, The Elementary Mechanisms of Liquid Sintering, 1979.
[21] K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
[22] R. M. German, Liquid Phase Sintering. New York: Plenum Press, 1985.
[23] J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of Materials Science, vol. 24, pp. 500-504, 1989.
[24] W. F. Smith, 材料科學與工程: 高立出版, 1994.
[25] 魏炯權, 電子材料工程: 全華, 2001.
[26] 陳皇鈞, 陶瓷材料概論 vol. 76: 曉園出版社有限公司, 1987.
[27] R. D. Richtmyer, "Dielectric resonators," J. Appl. Phys, vol. 10, pp. 391-398, 1939.
[28] D. M. Pozar, Microwave engineering, 2nd ed.: New York: John Wily & Sons, Inc, 1998.
[29] D. Kajfez. A. W. Glisson and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,, vol. 32[12], pp. 1609-1616, 1984.
[30] D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
[31] D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
[32] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977-2981, 2007.
[33] Z. Fu, P. Liu, J. Ma, X. Zhao, and H. Zhang, "Microwave dielectric properties of low-fired (1−x)Mg2Si0.9V0.1O4–xCa0.8Sr0.2TiO3 composite ceramics," Materials Chemistry and Physics, vol. 170, pp. 118-122, 2016.
[34] P. E. A. Randall L Geiger, Noel R Strader, VLSI design techniques for analog and digital circuits vol. 90. New York: McGraw-Hill, 1990.
[35] R. A. Pucel, D. J. Masse and C. P. Hartwig, "Losses in microstrip," Microwave Theory and Techniques," IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 16, pp. 342-350, 1968.
[36] E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory Techniques, vol. 28, pp. 513-522, 1980.
[37] G. L. Matthaei, E. M. T. Jones and L. Young, Microwave filters, impedance-matching networks, and coupling structures: Artech House, 1980.
[38] Z. Xiao-Chuan, Y. Zhi-Yuan and X. Jun, "Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling," Microwave and Wireless Components Letters, IEEE, vol. vol. 18, pp. 677-679, 2008.
[39] Z. Mingqi, T. Xiaohong and X. Fei, "Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling," Microwave and Wireless Components Letters, IEEE, vol. 20, pp. 139-141, 2010.
[40] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IRE Transactions on Microwave Theory and Techniques, vol. 8, pp. 402-410, 1960.
[41] O. V. Karpova, On an absolute method of measurement of dielectric properties of a solid using a II-shaped resonator vol. 1: Soviet Physics, 1959.
[42] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 18, pp. 476-485, 1970.
[43] C. Shuh-Han, "Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors," IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 33, pp. 519-526, 1985.
[44] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 33, pp. 586-592, 1985.
[45] P. Wheless and D. Kajfez, "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," in Microwave Symposium Digest, 1985 IEEE MTT-S International, 1985, pp. 473-476.
校內:2021-06-30公開