簡易檢索 / 詳目顯示

研究生: 姚智榮
Yeu, Dee-Lun
論文名稱: 微波介電陶瓷材料(1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之研發與無線通訊高頻濾波器之應用
Studies on the Dielectric Ceramic (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 and Associtaed Applications on High-Frequency Filters for Wireless Communications
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 116
中文關鍵詞: 微波介電陶瓷材料燒結促進劑帶通濾波器
外文關鍵詞: (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9–y(Ca0.8Sr0.2)TiO3, ZnMoO4, CuO, microwave dielectric ceramics, band-pass filter
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目標分三部分,第一部份將引進低損耗的介電材料(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9,為期望τ_f=0,添加具有正值共振頻率溫度漂移係數的材料(Ca0.8Sr0.2)TiO3(+991 ppm/℃),我們經由實驗得知微波介電陶瓷材料0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3在燒結溫度1375℃時,持溫4小時,擁有最佳微波特性: τ_f=-4.67 ppm/℃、ε_r=29.21、Q×f =317000GHz(at8.1GHz)。
    第二部分使用第一部分所得之結果分別添加燒結促進劑ZnMoO4與CuO探討液相對微波特性的影響。由實驗結果得知添加0.5wt%的ZnMoO4可有效降低燒結溫度至1300℃(下降約75℃)。在燒結溫度1300℃持溫4小時下可得到最佳的可得最佳微波特性:τ_f=0ppm/℃、ε_r=30.8、Q×f =156000GHz(at7.59GHz)。而添加0.5wt%的CuO可有效降低燒結溫度至1325℃。(下降約50℃)。在燒結溫度1325℃持溫4小時下可得到最佳微波特性:τ_f=-2.28ppm/℃、ε_r=31.1、Q×f =289000GHz(at7.61GHz)。
    最後,設計及製作一操作在2.4GHz的微帶線帶通濾波器,並實作於FR-4、Al2O3、自製基板0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3上,0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO。由量測的結果得知,利用高介電係數及低損耗的材料做為電路基板時,能達到縮小面積以及具有更好的濾波特性。

    The microwave dielectric properties and microstructures of (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9 –y(Ca0.8Sr0.2)TiO3 prepared by using the conventional solid-state were analyzed. The best result was ε_r=29.21, Q×f=317,000 at 7.61GHz, τ_f=-4.67ppm/℃ for y = 0.7 sintered at 1375℃ for 4 hr. Sintering aids were added to the system of the materials and the result showed reduction on the sintering temperature could be obtained by 75℃ and 50℃ for 0.5wt% ZnMoO4 and 0.5wt% CuO, respectively. Finally, 2.4GHz band-pass filters were fabricated on the substrates of the proposed materials. The measured filter properties were close to simulated results and measured insertion loss was 0.94dB, a great advantage over the substrates of FR4 and Al2O3.

    摘要 I Extended Abstract III 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 第二章 介電陶瓷材料原理 5 2-1剛玉結構 5 2-2 介電陶瓷材料之燒結原理 6 2-2-1材料燒結種類 7 2-2-2材料燒結之擴散機制 9 2-2-3 材料燒結之過程 9 2-3介電陶瓷材料之微波特性 10 2-3-1 介電係數 10 2-3-2 品質因數 13 2-3-3 共振頻率之溫度漂移係數 16 2-4介電共振器(Dielectric Resonator:DR)原理 18 2-5 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9與(Ca0.8Sr0.2)TiO3 22 第三章 微帶線及濾波器原理 26 3-1 濾波器原理 26 3-1-1濾波器簡介 26 3-1-2濾波器之種類及其頻率響應 26 3-2 微帶線原理 30 3-2-1微帶傳輸線簡介 30 3-2-2微帶線的傳輸模態 30 3-2-3微帶線的損失 31 3-3 λ/2開路微帶線共振器 32 3-4 U型微帶線共振器 35 3-4-1 U型微帶線共振器 35 3-4-2 採用Source-load Coupling產生傳輸零點 37 第四章 實驗程序與量測方法 38 4-1起始原料 38 4-2 介電陶瓷材料之製備 40 4-2-1粉末製作 40 4-2-2 陶瓷塊體製作 41 4-3 介電陶瓷塊體特性分析與量測 42 4-3-1 XRD相鑑定 42 4-3-2 掃描式電子顯微鏡(SEM) 44 4-3-3 密度之量測 45 4-3-4 微波特性之量測 46 4-3-5 共振頻率溫度係數之測量 53 4-4 濾波器之製作與量測 54 4-4-1濾波器製作 54 4-4-2濾波器量測 55 4-5進行步驟及研究流程規劃 57 4-5-1主相與混相粉末製備進行步驟 57 4-5-2實驗進行規劃 59 4-5-3研究流程規劃 62 第五章 實驗結果與討論 63 5-1 (1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 63 5-1-1( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之共振頻率溫度漂移係數分析 63 5-1-2( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之微波特性分析 65 5-1-3( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之密度量測 70 5-1-4( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之SEM微結構分析 74 5-1-5( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之XRD相鑑定分析 75 5-1-6( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3總結 78 5-2探討0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3添加燒結促進劑ZnMoO4的影響 79 5-2-1 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之共振頻率溫度漂移係數分析 80 5-2-2 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之微波特性分析 82 5-2-3 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之密度量測 85 5-2-4 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之SEM微結構分析 86 5-2-5 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之XRD相鑑定分析 88 5-2-6 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4總結 90 5-3探討0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3添加燒結促進劑CuO 91 5-3-1 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之共振頻率溫度漂移係數分析 91 5-3-2 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之微波特性分析 93 5-3-3 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之密度量測 97 5-3-4 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之SEM微結構分析 99 5-3-5 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之XRD相鑑定分析 100 5-2-6 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO總結 102 5-4濾波器模擬與實作 103 5-4-1 FR-4模擬與實作量測結果 103 5-4-2 Al2O3模擬與實作量測結果 105 5-4-3 0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3模擬與實作量測結果 106 5-4-4 0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO模擬與實作量測結果 109 第六章 結論 112 參考論文 114 表2-1 Mg4Ta2O9 、Co4Ta2O9、 Mg4Nb2O9之XRD繞射角度 23 表2-2 (Ca0.75Sr0.25)TiO3之XRD繞射角 24 表2-3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9之XRD繞射角 25 表4-1起始粉末的純度和品牌 38 表4-2 X光繞射分析儀操作條件 43 表4-3 研究流程規劃表 62 表5-1 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3對應實驗y值之理論密度 72 表5-2 FR-4基板濾波器之電路參數(mm) 103 表5-3 FR-4基板濾波器之模擬與實作特性比較 104 表5-4 Al2O3基板濾波器之電路參數(mm) 105 表5-5 Al2O3基板濾波器之模擬與實作特性比較 106 表5-6 0.3MCTN0.7CS基板濾波器之電路參數(mm) 107 表5-7 0.3MCTN0.7CS基板濾波器之模擬與實作特性比較 107 表5-8 0.3MCTN0.7CS+CuO基板濾波器之電路參數(mm) 109 表5-9 0.3MCTN0.7CS+CuO基板濾波器之模擬與實作特性比較 110 表5-10各基板濾波器之模擬與量測 111 圖2-1剛玉(Al2O3)結晶構造圖 5 圖2-2 corundum型結晶構造圖 5 圖2-3 Mg4Ta2O9的晶體結構 6 圖2-4空間極化示意圖 10 圖2-5電偶極極化示意圖 11 圖2-6離子極化示意圖 11 圖2-7電子極化示意圖 12 圖2-8極化頻率響應圖 13 圖2-9介電共振器頻率響應圖 14 圖2-10電磁波由介質1(ε1μ1)入射到介質2(ε2μ2) 18 圖2-11電磁波之在介質二中發生全反射 19 圖2-12圓柱型DR中各種mode之外部與內部功率傳輸比 20 圖2-13圓柱型DR電磁場分佈 21 圖2-14 PDF Card #00-038-1458:Mg4Ta2O9之XRD繞射圖 22 圖2-15 PDF Card # 00-038-1461:Co4Ta2O9之XRD繞射圖 22 圖2-16 PDF Card #00-038- 00-038-1459:Mg4Nb2O9之XRD繞射圖 23 圖2-17 PDFCard #01-070-8504:(Ca0.75Sr0.25)TiO3之XRD繞射圖 24 圖3-1射頻通訊系統前端架構 26 圖3-2各頻帶濾波器示意圖 28 圖3-3三種濾波器的低通原型圖 29 圖3-4微帶線之外觀圖 30 圖3-5微帶線之電場分佈圖 31 圖3-6二分之一波長微帶線諧振器的傳輸線示意圖 33 圖3-7平行耦合線濾波器 33 圖3-8 U型諧振器與U型濾波器 33 圖3-9正方形開迴路諧振器與開迴路諧振器濾波器 34 圖3-10折疊微帶線形成U型共振器 35 圖3-11直微帶線共振器的等效電路示意圖 35 圖3-12 U型共振器的電路布局圖 36 圖3-13 U型共振器的電路布局圖 36 圖3-14採用Source-load Coupling之U型共振器電路布局圖 37 圖3-15採用Source-load Coupling之U型共振器頻率響應模擬圖 37 圖4-1介電材料製作與量測流程圖 40 圖4-2燒結流程之持溫時間與溫度圖 42 圖4-3布拉格繞射示意圖 44 圖4-4量測模具 47 圖4-5探針前端之線圈耦合方式 48 圖4-6判別p值方法 49 圖4-7 DR量測示意圖 52 圖4-8濾波器之量測示意圖 55 圖4-9主相粉末製造流程圖 57 圖4-10混相粉末製造流程圖 58 圖4-11濾波器之電路佈局圖 61 圖5-1 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 ( y=0、0.65、0.7、0.75、0.8)之燒結溫度與溫度漂移係數關係圖 63 圖5-2 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 不同混合比例y(0、0.65、0.7、0.75、0.8)與共振頻率溫度漂移係數之關係圖 64 圖5-3 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 y(0、0.65、0.7、0.75、0.8)之燒結溫度與εr關係圖 65 圖5-4 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與εr關係圖 66 圖5-5 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與莫耳體積比之關係圖 66 圖5-6 莫耳體積比與與εr關係圖 67 圖5-7 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 y(0、0.65、0.7、0.75、0.8)之燒結溫度與Q×f關係圖 68 圖5-8 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與Q×f關係圖 69 圖5-9(1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 (0、0.65、0.7、0.75、0.8)燒結溫度與視密度關係圖 70 圖5-10 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與視密度關係圖 71 圖5-11 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與理論密度關係圖 72 圖5-12 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 (0、0.65、0.7、0.75、0.8)燒結溫度與相對密度關係圖 73 圖5-13 0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3不同燒結溫度點持穩4小時之SEM圖 75 圖5-14 0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3在不同燒結溫度點之XRD相鑑定繞射圖 76 圖5-15 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3在燒結溫度1375°C持穩4小時之XRD相鑑定繞射圖(y=0.65、0.7、0.75、0.8) 77 圖5-16 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之燒結溫度與溫度漂移係數關係圖 80 圖5-17 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2) 之不同添加量x與共振頻率溫度漂移係數之關係圖 81 圖5-18 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之燒結溫度與εr關係圖 82 圖5-19 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2) 之不同添加量x與εr關係圖 83 圖5-20 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之燒結溫度與Q×f關係圖 84 圖5-21 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2) 之不同添加量x與Q×f關係圖 84 圖5-22 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之燒結溫度與視密度關係圖 85 圖5-23 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之不同混合比例與視密度關係圖 86 圖5-24 0.3MCTN0.7CS添加0.5wt% ZnMoO4之燒結溫度持穩4小時之SEM圖 87 圖5-25 0.3MCTN0.7CS +0.5wt%的燒結促進劑ZnMoO4之XRD相鑑定繞射圖 89 圖5-26 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2)之燒結溫度與溫度漂移係數關係圖 91 圖5-27 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2) 之不同添加量x與共振頻率溫度漂移係數之關係圖 92 圖5-28 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2)之燒結溫度與εr關係圖 93 圖5-29 0.3MCTN0.7CS添加x wt%的CuO(x=0、0.5、1、2) 之不同添加量x與εr關係圖 94 圖5-30 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2)之燒結溫度與Q×f關係圖 95 圖5-31添加x wt%的ZnMoO4(x=0、0.5、1、2) 之不同添加量x與Q×f關係圖 95 圖5-32 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2)之燒結溫度與視密度關係圖 97 圖5-33 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2) 之不同混合比例與視密度關係圖 98 圖5-34 0.3MCTN0.7CS添加0.5wt% CuO之燒結溫度持穩4小時之SEM圖 99 圖5-35 0.3MCTN0.7CS +0.5wt%的燒結促進劑CuO之XRD相鑑定繞射圖 101 圖5-36 FR-4基板濾波器頻率響應圖 103 圖5-37 Al2O3基板濾波器頻率響應圖 105 圖5-38 0.3MCTN0.7CS基板濾波器頻率響應圖 107 圖5-39 0.3MCTN0.7CS+CuO基板濾波器頻率響應圖 109 圖5-40 濾波器實作圖 111

    [1] H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss," Journal of the European Ceramic Society, vol. 23, pp. 2485-2488, 2003.
    [2] M. T. Sebastian, Dielectric materials for wireless communication: Elsevier Science, 2008.
    [3] Joe_Taiwan. (2010, 印刷電路板與防電磁干擾設計 Printed Circuit Board (PCB) & EMC. Available: http://ssnt-tech.com/forum_det.php?action=view&id=79
    [4] 李洵穎. (2009, FR-4銅箔基板. Available: http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=10&id=0000120967_TLRL9IK059IQB884HIKRY
    [5] yangzhaowu. (2012, LED封裝領域用陶瓷基板現狀與發展簡要分析. Available: http://www.ledinside.com.tw/knowledge/20120514-21055.html
    [6] M. T. Sebastian, "Dielectric materials for wireless communication," ed, 2008, pp. 1-3.
    [7] xshanly. (2008, 微波频率合成技术-下. Available: http://wenku.baidu.com/view/ea9be84bcf84b9d528ea7a86.html
    [8] K. Wakino, K. Minai and H. Tamura, "Microwave Characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators," Journal of the American Ceramic Society, vol. 67, pp. 278-281, 1984.
    [9] C.-L. Huang and J.-Y. Chen, "High-Q Microwave Dielectrics in the (Mg1−xCox)2TiO4 Ceramics," Journal of the American Ceramic Society, vol. 92, pp. 379-383, 2009.
    [10] L. Bing-Jing, C. Jhih-Yong, H. Guan-Sian, J. Chang-Yang, and H. Cheng-Liang, "Dielectric properties of B2O3-doped 0.92(Mg0.95Co0.05)2TiO4-0.08(Ca0.8Sr0.2)TiO3 ceramics for microwave applications," Journal of alloys and compounds vol. vol. 505, pp. pp. 291-296, 2010
    [11] 谢志鹏 and 刘冠伟, "通过浸渗坯体引入烧结助剂制备半透明氧化铝陶瓷的方法," CN102093037 B, 2013.
    [12] D. C. Sun, S. Senz and D. Hesse, "Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions," J. Eur. Ceram. Soc., vol. 26, pp. 3181-3190, 2006.
    [13] B.-J. Li, S.-Y. Wang, C.-Y. Chiu, S.-H. Lin, and Y.-B. Chen, "Dielectric properties and mixture behavior of y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3 ceramic system at microwave frequency," Journal of Alloys and Compounds, vol. 661, pp. 357-362, 2016.
    [14] S. Cong-Zhi and L. Bing-Jing, "Study on Microwave Dielectric Material of (1-y)(Mg0.95Ni0.05)4(Nb1-xTax)2O9-y(Ca0.8Sr0.2)TiO3 and Application for Wireless Communication," 2014.
    [15] T.-C. Hsieh and B.-J. Li, "Improvement of Corundum-structured Dielectric Ceramic Material Mg4Ta2O9 with Mg2+ substituted by different doping ion and study," 2015.
    [16] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure-microwave property in(SrxCa(1-x))n+1TinO3n+1," Journal of the European Ceramic Society vol. 21, pp. 1723-1726, 2001.
    [17] J. Guo, D. Zhou, H. Wang, and X. Yao, "Microwave dielectric properties of (1 − x)ZnMoO4–xTiO2 composite ceramics," Journal of Alloys and Compounds, vol. 509, pp. 5863-5865, 2011.
    [18] D. Li, H. Wang, Z. He, Z. Xiao, R. Lei, and S. Xu, "Effect of CuO addition on the sintering temperature and microwave dielectric properties of CaSiO3–Al2O3 ceramics," Progress in Natural Science: Materials International, vol. 24, pp. 274-279, 2014.
    [19] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina," Journal of the American Ceramic Society, vol. 80, pp. 1885-1888, 1997.
    [20] W. J. Huppmann. and G. Petzow, The Elementary Mechanisms of Liquid Sintering, 1979.
    [21] K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
    [22] R. M. German, Liquid Phase Sintering. New York: Plenum Press, 1985.
    [23] J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of Materials Science, vol. 24, pp. 500-504, 1989.
    [24] W. F. Smith, 材料科學與工程: 高立出版, 1994.
    [25] 魏炯權, 電子材料工程: 全華, 2001.
    [26] 陳皇鈞, 陶瓷材料概論 vol. 76: 曉園出版社有限公司, 1987.
    [27] R. D. Richtmyer, "Dielectric resonators," J. Appl. Phys, vol. 10, pp. 391-398, 1939.
    [28] D. M. Pozar, Microwave engineering, 2nd ed.: New York: John Wily & Sons, Inc, 1998.
    [29] D. Kajfez. A. W. Glisson and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,, vol. 32[12], pp. 1609-1616, 1984.
    [30] D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [31] D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
    [32] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977-2981, 2007.
    [33] Z. Fu, P. Liu, J. Ma, X. Zhao, and H. Zhang, "Microwave dielectric properties of low-fired (1−x)Mg2Si0.9V0.1O4–xCa0.8Sr0.2TiO3 composite ceramics," Materials Chemistry and Physics, vol. 170, pp. 118-122, 2016.
    [34] P. E. A. Randall L Geiger, Noel R Strader, VLSI design techniques for analog and digital circuits vol. 90. New York: McGraw-Hill, 1990.
    [35] R. A. Pucel, D. J. Masse and C. P. Hartwig, "Losses in microstrip," Microwave Theory and Techniques," IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 16, pp. 342-350, 1968.
    [36] E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory Techniques, vol. 28, pp. 513-522, 1980.
    [37] G. L. Matthaei, E. M. T. Jones and L. Young, Microwave filters, impedance-matching networks, and coupling structures: Artech House, 1980.
    [38] Z. Xiao-Chuan, Y. Zhi-Yuan and X. Jun, "Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling," Microwave and Wireless Components Letters, IEEE, vol. vol. 18, pp. 677-679, 2008.
    [39] Z. Mingqi, T. Xiaohong and X. Fei, "Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling," Microwave and Wireless Components Letters, IEEE, vol. 20, pp. 139-141, 2010.
    [40] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IRE Transactions on Microwave Theory and Techniques, vol. 8, pp. 402-410, 1960.
    [41] O. V. Karpova, On an absolute method of measurement of dielectric properties of a solid using a II-shaped resonator vol. 1: Soviet Physics, 1959.
    [42] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 18, pp. 476-485, 1970.
    [43] C. Shuh-Han, "Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors," IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 33, pp. 519-526, 1985.
    [44] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 33, pp. 586-592, 1985.
    [45] P. Wheless and D. Kajfez, "The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators," in Microwave Symposium Digest, 1985 IEEE MTT-S International, 1985, pp. 473-476.

    無法下載圖示 校內:2021-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE