簡易檢索 / 詳目顯示

研究生: 陳柏郡
Chen, Po-Chun
論文名稱: 繆勒矩陣偏光儀於光學非等向性材料特性分析之研究
Mueller-matrix-based Polarimeter for the Determination of the Properties of Optically Anisotropic Materials
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 120
中文關鍵詞: 偏光儀史托克參數法繆勒矩陣光學非等向性材料
外文關鍵詞: Polarimeter, Optically Anisotropic materials, Stokes Parameters, Mueller Matrix
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展繆勒矩陣偏光儀來量測光學非等向性材料之光學參數;此量測技術於線性雙折射、線性雙向衰減、以及旋性雙折射結合的材料數學模型中,成功解出主軸角度(α)、相位延遲(β)、雙向衰減角度(θd)、雙向衰減(D)、以及旋光角(γ)。此五個參數α,β,θd,γ,D的動態量測範圍為0°~180°,0°~180°,0°~180°,0°~180°以及0~1,其中可看出相位延遲(β)無法全域量測。
    由文獻回顧得知,此研究在求解線性雙折射與線性雙向衰減所結合的材料數學模型中,第一個發展出讓線性雙折射與線性雙衰減材料解法分開的演算法。本研究亦成功模擬單模光纖的光纖參數,並經實驗驗證。除此之外,此研究利用新提出的模型可以將偏光儀引進到光纖量測法中,並成功的分析複雜的光纖偏光儀系統中的史托克參數。綜觀,此研究成果將會對於非等向性材料如光學薄膜以及生醫組織的研究,踏出重要一步。

    A new technique to measure optically anisotropic materials by Mueller matrix and Stokes parameters using a polarimeter is proposed. The measuring technique to determine the principal axis angle (α), retardance (β), diattenuation axis angle (θd), diattenuation (D), and optical rotation angle (γ) in the linear birefringence, linear diattenuation, and circular birefringence is successfully extracted by an analytical model. The dynamic range of five parameters α, β, θd, γ, and D are 0°~180°, 0°~180°, 0°~180°, 0°~180°, and 0~1, respectively, and only β is not in the full range.
    From author’s knowledge, this is the first finding that the linear birefringence and linear diattenuation could decouple in the analytical model. Five optical parameters of a single-mode fiber are extracted simultaneously and successfully. Also, a complex polarimetric system with an optical fiber is first quantitatively analyzed in Stokes parameters successfully by using this new proposed model. In conclusion, this could be an important step for researches on anisotropic materials like optical thin films or bio-tissues.

    Abstract.. I 中文摘要 II Table of Contents III List of Figures VII List of Tables XII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Review of the Diattenuation Measurement 1 1.3 Review of the Optical Activity Measurement 8 Chapter 2 Birefringence Materials and Diattenuation Materials 10 2.1 The Optical Properties of Linear Birefringence 10 2.2 Phase Retardation 16 2.3 Diattenuation Materials 19 2.4 Circular Birefringence Materials 20 Chapter 3 Basic Theory 24 3.1 Stokes Parameter Method 24 3.2 Jones matrix transform to Mueller matrix 26 Chapter 4 Measurement of Linear Birefringence and Linear Diattenuation 31 4.1 Basic Stokes Parameter Method of Sample with Linear Birefringence and Linear Diattenuation 31 4.1.1 Determination of Linear Birefringence of Sample 36 4.1.2 Determination of Linear Diattenuation of Sample 39 4.2 Error Analysis of Sample with Linear Birefringence and Linear Diattenuation 41 4.2.1 Zero Stokes Error Analysis 42 4.2.2 0%-0.5% Stokes Error Analysis 46 4.2.2.1 Proper Linear Birefringence and Linear Diattenuation 47 4.2.2.2 Little Linear Diattenuation 48 4.2.2.3 Little Linear Birefringence 50 Chapter 5 Measurement of Linear Birefringence, Linear Diattenuation, and Circular Birefringence 52 5.1 Basic Stokes Parameter Method of Sample with Linear Birefringence, Linear Diattenuation, and Circular Birefringence 52 5.2 Error Analysis of Sample with Linear Birefringence and Linear Diattenuation 58 5.2.1 Zero Stokes Error Analysis 58 5.2.2 0%-0.5% Stokes Error Analysis 63 5.2.2.1 Proper Linear Birefringence, Linear Diattenuation, and Circular Birefringence 64 5.2.2.2 Little Linear Diattenuation 65 5.2.2.3 Little Linear Birefringence 67 5.2.2.4 Little Circular Birefringence 69 Chapter 6 Measurement of Linear Birefringence with Fiber-type Polarimetric System 71 6.1 Basic Stokes Parameter Method of Measuring Linear Birefringence with Fiber-type Polarimetric System 71 6.2 Genetic Algorithm Model for Extracting Linear Birefringence Sample 73 6.3 Optical Activity Effect in Fiber-type Polarimetric System 80 6.3.1 Assuming Fiber with 15°, 30° or 60° Optical Rotation Angle 80 Chapter 7 Experimental Setup and Results 85 7.1 Experimental Setup and Results in Sample with Linear Birefringence and Linear Diattenuation 85 7.1.1 Experimental Setup in Sample with Linear Birefringence and Linear Diattenuation 85 7.1.2 Experimental Results in Sample with Linear Birefringence and Linear Diattenuation 89 7.1.2.1 Experimental Results of Quarter Waveplate with Little Diattenuation 89 7.1.2.2 Experimental Results of a Polarizer with Little Birefringence 91 7.1.2.3 Experimental Results of a Baked Polarizer 93 7.1.2.4 Experimental Results of a Composite Sample with a Quarter Waveplate and a Baked Polarizer 95 7.2 Experimental Setup and Results in Sample with Linear Birefringence, Linear Diattenuation, and Optical Activity 96 7.2.1 Experimental Setup in Sample with Linear Birefringence, Linear Diattenuation, and Optical Activity 96 7.2.2 Experimental Results in Sample with Linear Birefringence, Linear Diattenuation, and Optical Activity 99 7.3 Experimental Setup and Results of Linear Birefringence Sample with Fiber-type Polarimetric System 103 7.3.1 Experimental Setup of Fiber-type Polarimetric System for Measuring Linear Birefringence Sample 103 7.3.2 Experimental Results of Fiber-type Polarimetric System for Measuring a Linear Birefringence Sample 105 7.3.2.1 Fiber without Considering Optical Activity 105 7.3.2.2 Fiber Considering Optical Activity 107 Chapter 8 Conclusions and Future work 111 8.1 Conclusions 111 8.1.1 Conclusions of Sample with Linear Birefringence and Linear Diattenuation 111 8.1.2 Conclusions of Sample with Linear Birefringence, Linear Diattenuation, and Optical Activity 112 8.1.3 Conclusions of Fiber-type Polarimetric System for Measurement Linear Birefringence Sample 112 8.2 Future work 113 Bibliography 115 Autobiography 120

    Bueno, J.M. and Artal, P., "Average double-pass ocular diattenuation using foveal fixation," Journal of Modern Optics, Vol. 55, pp. 849-859, 2008.

    Bueno, J.M. and Artal, P., "Diattenuation of the human eye at the fovea," Investigative Ophthalmology & Visual Science, Vol. 46, 2005.

    Cameron, B.D. and G. L. Cóte, "Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach," IEEE Transactions on Biomedical Engineering, Vol. 44, pp. 1221-1227, 1997.

    Campillo, A.L. and Hsu, W.P., "Near-field scanning optical microscope studies of the anisotropic stress variations in patterned SiN membranes," Journal of Applied Physics, Vol. 91, pp. 646-651, 2002.

    Chenault, D.B. and Chipman, R.A., "Infrared birefringence spectra for cadmium-sulfide and cadmium selenide," Optics Letters, Vol. 17, pp. 4223-4227, 1992.

    Chenault, D.B. and Chipman, R.A., "Linear diattenuation and retardation measurements in an ir-spectropolarimeter," Polarimetry: Radar, Infrared, Visible, Ultraviolet, And X-Ray, Vol. 1317, pp. 263-278, 1990.

    Chenault, D.B. and Chipman, R.A., "Measurements of linear diattenuation and linear retardation spectra with a rotating sample spectropolarimeter," Applied Optics, Vol. 32, pp. 3513-3519, 1993.

    Cheng, H.C. and Lo, Y.L., "The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm, and two thermally modulated intensity," IEEE/OSA Journal of Lightwave Technology, Vol. 23, pp. 2158-2168, 2005.

    Chipman, R.A., "Polarization analysis of optical systems," Optical Engineering, Vol. 28, pp. 90-99, 1989.

    Chipman, R.A., Handbook of Optics, Vol. 2, Chapter 22, McGraw-Hill, 1995.

    Chou, C., Huang, Y.C., Feng, C.M., and Chang, M., "Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid," Japanese Journal of Applied Physics Part 1, Vol. 36, pp. 356-359, 1997.

    Ebisawa, M., Otani, Y., and Umeda, N., "A microscopic measurement system for birefringence and optical rotation distribution," Proceedings of SPIE, Vol. 6048, pp. 1-6, 2005.

    Fasolka, M.J., Goldner, L.S., Hwang, J., Urbas, A.M., Swager, P., DeRege, T., and Thomas, E.L., "Measuring local optical properties: near-field polarimetry of photonic block copolymer morphology," Physical Review Letters, Vol. 90, 2003.

    Goldner, L.S., Fasolka, M.J., and Goldie, S.N., "Measurement of the local diattenuation and retardance of thin polymer films using near-field polarimetry," Applications of Scanned Probe Microscopy to Polymers, Vol. 897, pp. 65-84, 2005.

    Goldner, L.S., Fasolka, M.J., Nougier, S., Nguyen, H.P., Bryant, G.W., Hwang, J., Weston, K.D., Beers, K.L., Urbas, A., and Thomas, E.L., "Fourier analysis near-field polarimetry for measurement of local optical properties of thin films," Applied Optics, Vol. 42, pp. 3864-3881, 2003.

    Higgins, D.A., VandenBout, D.A., Kerimo, J., and Barbara, P.F., "Polarization-modulation near-field scanning optical microscopy of mesostructured materials," Journal of Physical Chemistry, Vol. 100, pp. 13794-13803, 1996.

    Huang, X.R. and Knighton, R.W., "Diattenuation and polarization preservation of retinal nerve fiber layer reflectance," Applied Optics, Vol. 42, pp. 5737-5743, 2003.

    Khoo, I.C. and Simoni, F., Physics of Liquid Crystalline Materials, Chapter 13, Gorden and Breach Science Publishers, 1991.

    Kobayashi, J. and Uesu, Y., "A new optical method and apparatus HAUP for measuring simultaneously optical activity and birefringence of crystals: principles and construction," Journal of Applied Crystallography, Vol. 16, pp. 204-211, 1983.

    Lin, J.F., "Concurrent measurement of linear and circular birefringence using rotating-wave-plate Stokes polarimeter," Applied Optics, Vol. 47, pp. 4529-4539, 2008.

    Lo, Y. L. and Yu, T. C., "A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal," Optics Communications, Vol. 259, pp. 40-48, 2006.

    McGuire, J.P., Image formation and analysis in optical systems with polarization aberrations, Ph.D. thesis, University of Alabama in Huntsville, 1990.

    Michalewicz, Z. Genetic Algorithm+Data Structure= Evolution Programs, Springer-Verlag, 1994.

    Naydenova, I., Nikolova, L., Todorov, T., Andruzzi, F., Hvilsted, S., and Ramanujam, P. S., "Polarimetric investigation of materials with both linear and circular Anisotropy," Journal of Modern Optics, Vol. 44, pp. 1643-1650, 1997.

    Todorovic, M., Jiao, S.L., and Wang, L.V., "Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography," Optics Letters, Vol. 29, pp. 2402-2404, 2004.

    Yariv, A. and Yeh, P., Optical waves in crystal, Chapter 4, John Wiley&Sons, 1984.

    Bibliography of Website:
    A. http://www.hindsinstruments.com
    B. http://www.meadowlark.com

    下載圖示 校內:2015-07-24公開
    校外:2015-07-24公開
    QR CODE