簡易檢索 / 詳目顯示

研究生: 羅智
Lo, Chih
論文名稱: 新型單級式充電幫浦功因修正複金屬燈電子安定器之研製
Design and Implementation of Novel Single-Stage Charge-Pump Power-Factor-Correction Electronic Ballast for Metal Halide Lamp
指導教授: 林瑞禮
Lin, Ray-Lee
李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 96
中文關鍵詞: 充電幫浦功因修正單級式複金屬燈電子安定器全橋
外文關鍵詞: charge-pump(CP), power-factor-correction(PFC), single-stage, metal halide lamp, electronic ballast, full-bridge
相關次數: 點閱:166下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一新型單級式具充電幫浦功因修正之複金屬燈電子安定器。為了避免複金屬燈音頻共振之問題,電子安定器以低頻方波電流驅動燈管。
    目前市面上,大多數複金屬燈電子安定器皆以兩級式或三級式之電路架構為主,其缺點為控制電路複雜與元件數量較多。為了簡化複金屬燈電子安定器之電路架構,充電幫浦功因修正技術被應用於傳統兩級式電子安定器之全橋換流器。因此,本論文發展出一新型單級式具充電幫浦功因修正複金屬燈之電子安定器。
    本文提出電子安定器中,充電幫浦元件之設計準則。此外,為了降低高頻臂功率開關導通時之切換損失,全橋電路中的主電感被設計操作在邊界導通模式。
    最後,依據所設計之電路參數,實做一應用於35W複金屬燈之單級式充電幫浦功因修正電子安定器,俾以驗證本文提出之設計準則與電路性能。

    This thesis presents a novel single-stage charge-pump power-factor-correction (CPPFC) electronic ballast for the metal halide (MH) lamp. The ballast is driven with the low-frequency square-wave current to avoid the acoustic-resonance problem.
    Most electronic ballasts for the MH lamp are composed of two or three power converter stages, which require a complicated control scheme and more circuit-component count. In order to simplify the topologies of the conventional electronic ballasts for the MH lamp, the CPPFC technique is applied to the full-bridge inverter of the conventional two-stage electronic ballast. Therefore, a novel single-stage CPPFC electronic ballast for the MH lamp is developed in this thesis.
    The design considerations for the charge-pump (CP) components are proposed according to the analysis of the operational principles for the proposed electronic ballast. Furthermore, the main inductor in the full-bridge inverter has been designed to operate at the boundary conduction mode (BCM) condition in order to reduce the turn-on switching losses on the high-frequency switches.
    Finally, a prototype circuit of a 35W single-stage CPPFC electronic ballast for MH lamp is implemented to verify the design guidelines and circuit performances.

    CHAPTER 1. INTRODUCTION 1 1.1.Background 1 1.2.Motivation 5 1.3.Thesis Outline 6 CHAPTER 2. PROPOSED ELECTRONIC BALLAST 7 2.1.Introduction 7 2.2.Review of Related Technologies for Proposed Electronic Ballast 8 2.2.1.Charge-Pump Power-Factor- Correction Technology 8 2.2.2.Conventional Two-Stage Electronic Ballast for Metal-Halide Lamp 10 2.3.Proposed Electronic Ballast 12 2.3.1.Operational Principles 16 2.3.2.Design Considerations of Operating Frequency for Low-Frequency Switch Leg 31 2.4.Summary 33 CHAPTER 3. ANALYSIS AND DESIGN OF PROPOSED CIRCUIT 34 3.1.Introduction 34 3.2.Proposed Single-Stage Charge-Pump Power-Factor-Correction Electronic Ballast 35 3.2.1.Design for Charge-Pump Capacitors Cin1, Cin2 and PFC Inductor LX 36 3.2.2.Design for Inductor Lr of CPPFC Network 47 3.2.3.Design for Main Inductor L1 of Full-Bridge Inverter 50 3.3.Line-Voltage Sensing Circuit 56 3.4.Constant Power Control Scheme 60 3.5.Auxiliary Power Supply for ControlC 63 3.6.Igniter Circuit 66 3.7.Summary 67 CHAPTER 4.IMPLEMENTATION AND EXPERIMENTAL RESULTS 68 4.1.Introduction 68 4.2.Implementation of Prototype Circuit 68 4.3.Experimental Results 71 4.4.Summary 77 CHAPTER 5.CONCLUSIONS AND FUTURE WORK 78 REFERENCES 80 APPENDIX A. SIMPLIS® Simulation Schematic 83 APPENDIX B. MathCAD® Equation Derivation 84 APPENDIX C. Program Code of MCU 90 APPENDIX D. Photograph of Prototype Circuit 95 VITA 96

    [1]B. Cook, “New developments and future trends in high-efficiency lighting,” Eng. Sci. Educ. J., vol. 9, no. 5, pp. 207-217, 2000.
    [2]M. Sugiura, “Review of metal-halide discharge-lamp development 1980-1992,” in Proc. IEE Meas., Technol., Vol. 140, No. 6, Nov. 1993, pp. 443-449.
    [3]R.G. Gibson, “Investigations into LFSW ballast induced instabilities in ceramic metal halide lamps,” in Proc. IEEE-IAS Annu. Meeting, 2006, vol. 3, pp. 1372-1376.
    [4]C. S. Moo, S. Y. Tang, C. R. Lee, J. H. Chen, and W. T. Tsai, “Investigation into high-Frequency operating characteristics of metal-halide lamps,” IEEE Trans. Power Electron., vol. 37, no.11, pp. 2234-2240, Nov. 2009.
    [5]M. Ponce, A. Lopez, J. Correa, J. Arau and J. M. Alonso, “Electronic ballast for HID lamps with high frequency square waveform to avoid acoustic resonances,” in Proc. IEEE Appl. Power Electron. Conf., 2001, vol. 2, pp.658-663.
    [6]C. A. Cheng, T. J. Liang, C. M. Chuang, and J. F. Chen, "A high power factor electronic ballast of projector lamps with variable frequency control," in Proc. IEEE Power Electron. Spec. Conf., 2002, vol. 1, pp. 213-217.
    [7]W. Yan, Y. K. E. Ho, and S. Y. R. Hui, “Stability study and control methods for small-wattage high-intensity-discharge (HID) lamps,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1522-1530, Sep./Oct. 2001.
    [8]R. L. Lin and Z. Q. Wang, “2.65MHz self-oscillating electronic ballast with constant-lamp-current control for metal halide lamp,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 839-844, May 2007.
    [9]J. Garcia-Garcia, J. Cardesin, J. Ribas, A. J. Calleja, E. L. Corominas, M. Rico-Secades, and J. M. Alonso, “Using high frequency current square waveforms to avoid acoustic resonances in low wattage metal halide lamps,” in Proc. IEEE Power Electron. Spec. Conf., 2004, pp. 2799-2804.
    [10]L. Laskai, P. N. Enjeti, and I. J. Pitel, “White-noise modulation of high-frequency high-intensity discharge lamp ballasts,” IEEE Trans. Ind. Appl., vol. 34, no. 3, pp. 597-605, May/June 1998.
    [11]D. H. J. van Casteren, M. A. M. Hendrix, and J. L. Duarte, “Controlled HID lamp-ballast interaction for low-frequency square-wave drivers,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 854–862, May 2007.
    [12]M. A. Dalla Costa, J. M. Alonso, J. Garcia, J. Cardesin, and M. Rico-Secades, “Acoustic resonance characterization of low-wattage metal halide lamps under low-frequency square-waveform operation,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 735-743, May 2007.
    [13]T. J. Liang, C. A. Cheng, and W. S. Lai, “A novel two-stage high-power-factor low-frequency HID electronic ballast,” in Proc. IEEE IECON’03, Nov. 2003, vol. 3, pp. 2607-2612.
    [14]C. M. Huang, T. J. Liang, R. L. Lin, and J. F. Chen, “A novel constant power control circuit for HID electronic ballast,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 854-862, May 2007.
    [15]J. Melis and O. Vila-Masot, “Low frequency square wave electronic ballast for gas discharge lamps,” U. S. Patent 5428268, June 27, 1995.
    [16]M. Shen, Z. Quian, and F. Z. Peng, “A novel two-stage acoustic resonance free electronic ballast for HID lamps,” in Proc. IEEE-IAS Annu. Meeting, 2002, vol. 3, pp. 1869-1874.
    [17]M. Shen, Z. Qian, and F. Z. Peng, “Design of a two-stage low-frequency square-wave electronic ballast for HID lamps,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 424-430, Mar./Apr. 2003.
    [18]T. J. Liang, C. M. Huang, and J. F. Chen, “Interleaving controlled three-leg electronic ballast for dual-HID-lamps.” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1401-1409, May 2008.
    [19]J. Qian, Advanced Single-Stage Power Factor Correction Techniques, Ph.D. Dissertation, Virginia Tech, Setp. 1997.
    [20]J. Qian, F. C. Lee, and T. Yamauchi, “Current-source charge-pump power-factor-correction electronic ballast,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 564-572, May 1998.
    [21]J. Qian, F. C. Lee, and T. Yamauchi, “New continuous-input current charge pump power-factor-correction electronic ballast,” IEEE Trans. Power Electron., vol. 35, no. 2, pp. 433-441, Mar./Apr. 1999.
    [22]R. L. Lin, H.Y. Liu, and H. M. Shih, “AC-side CCM CS-CP-PFC electronic ballast,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 789-796, May 2007.
    [23]J. Qian and F. C. Lee, “Voltage-source charge-pump power-factor-correction ac-dc converters,” IEEE Trans. Power Electro., vol. 14, no. 2, pp. 350-358, Mar. 1999.
    [24]C. M. Huang, T. J. Liang, R. L. Lin, and J. F. Chen, “Constant power control circuit for HID electronic ballast,” in Proc. IEEE-IAS Annu. Meeting, 2005, vol. 2, pp. 1193-1197.
    [25]Microchip, “28/40-pin 8-Bit CMOS flash crocontrollers,” PIC16F87X datasheet, 2001.
    [26]M. Rico-Secades, E. L. Corominas, J. M. Alonso, J. Ribas, J. Cardesín, A. Calleja, and J. García, “Complete low-cost two-stage electronic ballast for 70-W high-pressure sodium vapor lamp based on current-mode-controlled buck-boost inverter,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 728-734, May/June 2005.

    下載圖示 校內:2015-09-01公開
    校外:2015-09-01公開
    QR CODE