| 研究生: |
辛建寧 Hsin, Chien-Ning |
|---|---|
| 論文名稱: |
利用電子蒸鍍技術成長氧化鋅摻雜銦之透明導電薄膜應用在氮化鎵藍色發光二極體之研究 Investigation of In-doped ZnO(IZO) transparent conducting thin films deposited by electron beam evaporation technique on GaN-based Blue Light Emitting Diodes |
| 指導教授: |
賴韋志
Lai, Wei-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 電子束蒸鍍技術 、透明導電氧化薄膜 、氧化鋅摻雜銦 、氮化鎵 、發光二極體 |
| 外文關鍵詞: | TCO, IZO, Electron Beam Evaporation, Transparent Conducting Thin Films, GaN, Light Emitting Diodes |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要利用電子束蒸鍍技術來蒸鍍氧化鋅摻雜銦(IZO)之透明導電薄膜,有別於過去常用的濺鍍法(Sputtering)來成長氧化鋅(ZnO)薄膜系列,本論文研究一開始針對不同成長條件之IZO薄膜進行光電特性之量測分析以及其在P型氮化鎵(p-GaN)上之歐姆接觸特性研究,最後,將此薄膜成長於氮化鎵藍色發光二極體上,探討熱處理對於IZO薄膜應用在氮化鎵藍色發光二極體上之光電特性之差異。
由實驗可知,在不同成長溫度,隨著氧氣流量的增加,IZO薄膜有電阻率下降,穿透率提升的趨勢,在成長溫度250℃以上並且加入氧氣的條件下,皆有最低電阻值約1x10-3 Ω-cm,而在350℃/10sccm的條件下成長薄膜,穿透率在可見光波段超過85%以上,為成長IZO薄膜的最佳條件。
將IZO薄膜直接成長在P型氮化鎵上,卻發現對IZO薄膜光電特性愈有利的成長環境,歐姆接觸特性愈差,對於薄膜光電特性與歐姆接觸特性而言,成長環境上的需求是互相矛盾的。除了成長條件為250℃/5sccm的IZO薄膜,在歐姆接觸特性上有較特殊的的趨勢,其特徵接觸電阻為3.61×10-2 Ω-cm2,有較良好的歐姆接觸特性,然而其薄膜電阻值雖然仍有1.32x10-3 Ω-cm,但是在可見光波段的穿透率大約在75%~82%,與最佳成長條件之IZO薄膜相比穿透率減少約10%左右。為了要將IZO薄膜應用在氮化鎵藍色發光二極體上,因此考量其IZO TCL LED電性上的需求,所以選擇250℃/5sccm為IZO薄膜應用在氮化鎵藍色發光二極體成長條件。
探討不同溫度熱處理後之IZO薄膜應用在氮化鎵藍色發光二極體上之光電特性,IZO TCL LED受高溫熱處理影響,在20mA 之電流注入時,其順向導通電壓在未經熱處理到熱處理溫度600℃時,從3.78V增加到5.99V,大幅增加了2.21V,當熱處理溫度在700℃與800℃時,其順向導通電壓開始有下降的趨勢,分別為3.81V及3.34V,主要原因為熱處理對歐姆接觸特性造成的影響,由於熱處理溫度在800℃時,有最小特徵接觸電阻為3.76×10-2 Ω-cm2,比未熱處理前的特徵接觸電阻5×10-2 Ω-cm2降低許多,所以Vf下降了0.44V。
而未熱處理前的IZO TCL LED光輸出功率為4.91mW比熱處理溫度800℃時之光輸出功率為4.2mW下降約17%,考慮熱處理對IZO薄膜光電特性的影響,熱處理溫度在800℃,薄膜穿透率提升了大約5%~10%,但薄膜電阻率從未熱處理前的1.32×10-3 Ω-cm,升高到1.44×10-2 Ω-cm,導致電流不容易從IZO薄膜擴散出去,再加上特徵接觸電阻在熱處理溫度800℃時比未熱處理前下降許多,導致在P型電極附近電流擁擠的情形更加嚴重,因此對發光面積造成影響,進而影響光輸出功率。
In this study the conductive and transparent In-doped ZnO (IZO) thin films were deposited by electron-beam evaporator to be the transparent contact layers for nitride-based light emitting diodes. We focus on the optimization of the electrical and optical properties of IZO films by varying the deposition conditions. It was found that the resistivity of as-deposited IZO thin films deposited at 250℃ with oxygen flow rate 5sccm could be as low as 1.32×10-3 Ω-cm and the optical transmittance is about 75%~82% in visible spectrum regions. It was also found that the specific contact resistance of IZO contact on p-GaN was 3.61×10-2 Ω-cm2.
After thermal annealing in 500℃~800℃ for 1 min in N2 ambient, the optical transmittance of IZO thin films were increased about 10%. In contrast, the resistivity of IZO was increase with increasing the annealing temperature. It was found that the resistivity of IZO was 3.76x10-2 Ω-cm2 at 800℃ annealing temperature. Besides the forward voltage(Vf @20mA) of the IZO TCL LEDs with different annealing temperatures of as-deposit, 500, 600, 700 and 800℃were 3.78V, 4.15V, 5.99V, 3.81V and 3.34V, respectively. The output power of IZO LED annealed at 800oC is about 14% less than that of as-deposited IZO LEDs even though the low Vf of 3.34V of 800oC annealing IZO LED was reached. The deteriorated output power of the 800oC annealing IZO LED might be attributed to the worse current spread of the increased IZO TCL resistivity with 800oC annealing.
[1] Xu Zi-qiang, Deng Hong, Li Yan, Cheng Hang, Materials Science in Semiconductor Processing 9, 132–135 (2006)
[2] J. G. Lu, S. Fujita,_ T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, B. H. Zhao, J. Appl. Phys. 101, 083705 (2007)
[3] Kai-Ming Uanga, Shui-Jinn Wang , Shiue-Lung Chen, Tron-Min Chen, Bor-Wen Liou, Thin Solid Films 515, 2501–2506 (2006)
[4] June O Song, Kyoung-Kook Kim, Seong-Ju Park, and Tae-Yeon Seong, Appl. Phys. Lett. 83, 3(2003)
[5] Chun-Ju Tun, Jinn-Kong Sheu, Bao-Jen Pong, Min-Lum Lee, Ming-Yu Lee, Cheng-Kang Hsieh, Ching-Chung Hu,and Gou-Chung Chi, IEEE Photonics Technol. Lett. 18, pp274-276 (2006)
[6] 呂彥興, “氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用”,國立成功大學光電與工程研究所,碩士論文(2007)
[7] X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul, L. Zhang, R.Hickman, and J. M. Van Hove, Appl. Phys. Lett. 75, 2569-2571(1999)
[8] 施敏, 半導體元件物理與製作技術, p.96
[9] Dieter K. Schroder, Semiconductor material and device characterization, p.146
[10] Jae-Hong Lim, Dae-Kue Hwang, Hyun-Sik Kim, Jin-Yong Oh, Jin-Ho Yang,R. Navamathavan, and Seong-Ju Park, Appl. Phys. Lett. 85, 6191-6193(2004)
[11] Sang Hyeob Kim, Nae-Man Park, TaeYoub Kim, GunYong Sung , Thin Solid Films 475, 262–266 (2005)
[12] 蔡明倫, “ITO 鍍膜於PET 基板上之研究” ,國立中央大學光電科學研究所,碩士論文(2005)
[13] D.Y. Ku, I.H. Kim, I. Lee, K.S. Lee, T.S. Lee, J.-h. Jeong, B. Cheong, Y.-J. Baik and W.M. Kim, Thin Solid Films 515, 1364–1369 (2006)
[14] E. Fred Schubert, Light-emitting diodes, second edition, p.92, p.133~p.138