簡易檢索 / 詳目顯示

研究生: 曾茂源
Tseng, Mao-yuan
論文名稱: 以電化學法偵測氯化三甲基錫與氯化三丁基錫
Study on the electrochemical detection of trimethyltin chloride and tributyltin chloride
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 74
中文關鍵詞: 伏安法有機錫剝除
外文關鍵詞: organotin, stripping, voltammetry
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    以電化學法去偵測有機錫至今已有不少文獻被發表,這種方法具有不錯的敏感度、操作方便、容易得到結果等優點。若是配合修飾電極,可使偵測的結果更加明確,並可提高偵測極限。本論文主要是利用陽離子交換聚合物(Nafion)修飾電極,並將此電極用於分析有機錫的應用。
    實驗針對二種有機錫化合物,Trimethyltin Chloride(TMT)與Triibutyltin Chloride (TBT),並以水溶液為設定的環境狀態,利用電化學法偵測這兩種物質在水溶液中的含量。
    在這實驗中,利用Nafion其本身所帶的負電荷的關係吸引存在水溶液中的有機錫離子,而能有效濃縮於電極表面上。配合其它的適當條件與方法,使得在低的濃度下也能進行偵測。
    實驗中探討了電化學行為、電極種類、電解質種類、電解質濃度、水溶液中pH值高低影響、沈積電位、沈積時間及方波伏安法等參數,並探討如何去除水溶液中其它金屬離子的干擾。對於Tri-methyltin Chloride與Triibutyltin Chloride本實驗分開討論。
    第一部份探討Trimethyltin Chloride,本實驗所得之結果是利用Nafion-汞膜修飾玻璃碳電極為工作電極,以方波伏安法從負電位的方向從正電位方向掃引。電解質為0.5M的NaCl,pH值為5.0,沈積電位為-900mV、沈積時間4分鐘,檢量線的線性範圍為20μM到240μM。
    第二部份探討Tributyltin Chloride,本實驗所得之結果是利用Nafion-汞膜修飾玻璃碳電極為工作電極,以方波伏安法從負電位的方向從正電位方向掃引。電解質為0.1M的NaCl,pH值為5.0,沈積電位為-800mV、沈積時間4分鐘,檢量線的線性範圍為1μM到8μM。

    Abstract
    Many theses of electrochemical methods detecting organotin have been announced and the electrochemical methods have good sensitivity, convenient operation, easy to answer. If the concert of modified electrode, we will get the result more explicit. This thesis mainly used the modified electrode with cation exchange polymer (Nafion) to detect the organotin.
    There were two kinds of organotin, Trimethyltin Chloride (TMT) and Tributyltin Chloride (TBT), and we detected the contains of these organotin in aqueous solution by electrochemical method.
    In this experiment, we use the negative charge of Nafion to attract the organotin cations, and these cations can be condensed effectively on the surface of the electrode. If matching with appropriated methods, the lower concentration of organotin can be detected.
    We inquired into the items of electrochemical behavior, electrode type, electrolyte type, concentration of electrolyte, pH value of solution, potential of precipitation, necessary time of precipitation and the parameters of square wave voltammetry. We also inquired into how to get rid of interference of the other metal ions. TMT and TBT were discussed separately.
    At part I, we inquired into the Trimethyltin Chloride (TMT). The results of the experiment are following:
    The working electrode was the Nafion-Mercury film coated glassy carbon electrode (NMFGCE). The direction of sweep was from negative potential to positive potential by method of square wave voltammetry. The electrolyte is 0.5M NaCl, pH value of solution was 5.0, potential of precipitation was –900mV, necessary time of precipitation was 240 sec. The linearity rage was from 20μM to 240μM.

    At part II, we inquired into the Tributyltin Chloride (TBT). The results of the experiment are following:
    The working electrode was the Nafion-Mercury film coated glassy carbon electrode (NMFGCE). The direction of sweep was from negative potential to positive potential by method of square wave voltammetry. The electrolyte is 0.1M NaCl, pH value of solution was 5.0, potential of precipitation was –800mV, necessary time of precipitation was 240 sec. The linearity rage was from 1μM to 8μM.

    中文摘要..…………………………………………………………………………I 英文摘要……………………………………………………………………………II 目錄…………………………………………………………………………………V 圖目錄……………………………………………………………………………VIII 第一章 緒論………………………………………………………………………1 1-1前言…………………………………………………………………………1 1-2 分析物介紹………………………………………………………………..3 1-3 文獻回顧………………………………………………………………….3 第二章 原理……………………………………………………………………….8 2-1 循環伏安法…………………………………………………………………8 2-2 剝除分析法………………………………………………………………..15 2-2-1 剝除分析法的原理…………………………………………………..15 2-2-2 剝除伏安法種類……………………………………………………..19 2-3 化學修飾電極……………………………………………………………20 2-3-1 化學修飾電極的製備方法…………………………………………..21 2-3-2 高分子修飾劑種類…………………………………………………..22 第三章 實驗部分……………………………………………………………….26 3-1 儀器部分……………………………………………………………………26 3-1-1 儀器分述……………………………………………………………….27 3-1-2 儀器裝置……………………………………………………………….27 3-2 藥品部分…………………………………………………………………..27 3-2-1 藥品種類……………………………………………………….. 27 3-2-2 藥品配製……………………………………………………….. 29 3-3電極之前處理步驟………………………………………………….. 30 3-3-1 工作電極之前處理步驟…………………………………………………30 3-3-2 參考電極之前處理步驟…………………………………………30 3-3-3 輔電極之前處理步驟……………………………………………31 3-4 化學修飾電極的製作……………………………………………………….31 3-5 實驗操作環境的準備……………………………………………………..33 第四章 結果與討論………………………………………………………………34 4-1 Nafion汞膜修飾電極對於水溶液中Trimethyltin Chloride(TMT)之偵測 4-1-1 TMT的電化學行為……………………………………………………..34 4-1-2 偵測電極的選擇………………………………………………………….36 4-1-3 電化學方法的選擇……………………………………………………….36 4-1-4 電解質溶液的選擇……………………………………………………….36 4-1-5 電解質濃度的選擇……………………………………………………….40 4-1-6 溶液中pH值的影響……………………………………………………..40 4-1-7 沈積電位對偵測的影響………………………………………………….43 4-1-8 沈積時間對偵測的影響………………………………………………….43 4-1-9 方波參數對偵測的影響………………………………………………….46 4-1-10 檢量線的製作……………………………………………………………47 4-1-11 干擾物的影響………………………………………………………….. 49 4-2 Nafion汞膜修飾電極對於水溶液中Tributyltin Chloride(TBT)之偵測 4-2-1 TBT的電化學行為…………………………………………………….. 52 4-2-2 偵測電極的選擇………………………………………………………….52 4-2-3 電化學方法的選擇……………………………………………………….55 4-2-4 電解質溶液的選擇……………………………………………………….55 4-2-5 電解質溶度的選擇……………………………………………………….55 4-2-6 溶液中pH值的影響……………………………………………………..59 4-2-7 沈積電位對偵測的影響………………………………………………….61 4-2-8 沈積時間對偵測的影響………………………………………………….61 4-2-9 方波參數對偵測的影響………………………………………………….61 4-2-10 檢量線的製作………………………………………………………….. 64 4-2-11 干擾物的影響………………………………………………………….. 66 第五章 結論………………………………………………………………………..69 參考文獻…………………………………………………………………………….71 圖目錄 圖1-1 氯化三甲基錫與氯化三丁基錫之結構…………………………………...3 圖2-1 線性掃瞄伏安法電位施予形式示意圖………………………………….10 圖2-2 循環伏安法電位施予形式示意圖……………………………………….10 圖2-3 微分脈衝極譜法電位施予形式示意圖………………………………….11 圖2-4 方波伏安法電位施予形式示意圖……………………………………….13 圖2-5 方波伏安法電位施予時各部份控制參數示意圖……………………….14 圖2-6 剝除方析法之電位施加形式示意圖…………………………………….16 圖2-7 Nafion結構示意圖……………………………………………………….23 圖2-8 PVP結構與反應示意圖………………………………………………….24 圖2-9 Tosflex結構示意圖………………………………………………………25 圖3-1 實驗裝置示意圖….……………………………………………………….28 圖3-2 化學修飾電極示意圖……………………………………………………..32 圖4-1 TMT的電化學行為……………………………………………………….35 圖4-2 TMT偵測電極的選擇…………………………………………………….37 圖4-3 TMT電化學方法的選擇………………………………………………….38 圖4-4 TMT電解質溶液的選擇………………………………………………….39 圖4-5 TMT電解質濃度的選擇………………………………………………….41 圖4-6 TMT溶液中pH值的影響………………………………………………..42 圖4-7 TMT沈積電位對偵測的影響…………………………………………….44 圖4-8 TMT沈積時間對偵測的影響…………………………………………….45 圖4-9 TMT檢量線的製作……………………………………………………….48 圖4-10 TMT干擾物的影響……………………………………………………..51 圖4-11 TBT的電化學行為……..……………………………………………….53 圖4-12 TBT偵測電極的選擇…………………..……………………………….54 圖4-13 TBT電化學方法的選擇…..…………………………………………….56 圖4-14 TBT電解質溶液的選擇……..………………………………………….57 圖4-15 TBT電解質濃度的選擇………………………………..……………….58 圖4-16 TBT溶液中pH值的影響……………………………………………….60 圖4-17 TBT沈積電位對偵測的影響……………………………………………62 圖4-18 TBT沈積時間對偵測的影響……………………………………………63 圖4-19 TBT檢量線的製作………………………………………………………65 圖4-20 TBT干擾物的影響……………………………………………………..67

    參考文獻
    [1] 徐聖煦,農藥化學,正中書局。
    [2] 路軍,馬懷讓,化學通報,1999年,第二期,科學出版社,北京市
    [3] 白志虹,眭台生,國立中山大學化學研究所碩士論文,民國90年7月
    [4] 洪楚璋 教授,國立大學海洋研究所化學組,http://chem.oc.ntu.edu.tw/research/hon/ hon_01.htm
    [5] 行政院環境保護署網站http://www.epa.gov.tw/Dio/ed1_1.htm
    [6] ACROS 網站http://www.acros.be/
    [7] Sarradin,P.M;Leguille,F.;Astruc,A.;Pinel,R;Astruc,M Analyst, 120, 79 (1995)
    [8] Chau,Y.K.;Yang,F, Appl. Organomet. Chem.11,851(1997)
    [9] Lalere,B; Szpunar,J.; Budzinski,H.; Garrigues,P.; Donard,O.F.X.; Analyst, 120,2665 (1995)
    [10] Cedric G.Arnold;Michael Berg;Stephan R. Muiier, Urs Dommann; Rene P. S., Anal.Chem.70,3094(1998)
    [11] Rivaro,P.;Zaratin,L.;Frache,R.;Mazzucotelli,A. Analyst,120,1937(1995)
    [12] G.Schulze;C. Lehmann,Anal.Chim.Acta 288, 215(1994)
    [13] C.Kalambaheti;P.Wilairat;N.Sakulpaisith;P.Visoottiviseth, Appl. Organomet. Chem. 12,1 (1998)
    [14] Keiichi Fukushi;Katsunori Sagishima;Keiitsu Saito;Sahori Takeda; Shin-ichi Wakida;Kazuo Hiiro, Anal. Chim. Acta,383,205(1999)
    [15] G.Weber,Anal.Chem.Acta, 186,49(1986)
    [16] C.M.G. van den Berg;S.H.Khan;J.P.Riley, Anal.Chem.Acta, 222, 43 (1989)
    [17] C.M.G. van den Berg;S.H.Khan,Analyst,116,585(1991)
    [18] T.Ferri;F.Roberti;S.Chiavarini;C.Cremisini;R.Morabito, Appl. Organomet. Chem.8,587 (1994)
    [19] M.D.Booth;B.Fleet, Anal. Chem. 42:(8),825(1970)
    [20] Cherrie B. Pascual;Victoria A. Vicente-Beckett, Anal. Chim. Acta, 224, 97(1989)
    [21] A.M.M.Ali, M.A.Ghandour,S.A.El-Shatoury,S.M.Ahmed, Electroanalysis 12:(2)155(2000)
    [22] C.M.Wang, H.L.Li,Electroanalysis 10:(1)44(1998)
    [23] D.K.Gosser, ”Cyclic Voltammetry-Simulation and Analysis of Reaction Mechanisms” ,VCH New York ,1993
    [24] R.S.Sadana,Anal.Chem.,55,304(1983)
    [25] R.Bilewiez; Z.Kubilk,Anal.Chim.Acta, 171,205(1985)
    [26] J.M.Zen;I.L.Chen;Y.Shih,Anal.Chim.Acta,369,103(1998)
    [27] J.M.Zen;S.H.Jeng;H.J.Chen,Anal.Chem.,68,498(1996)
    [28] J.Wang, “Stripping Analysis-Principles, Instrumentation, and Applications”, VCH, New York,1985
    [29] H.Y.Yang, I.W.Sun, Electroanalysis,11,195(1999)
    [30] H.Y.Yang, I.W.Sun Anal. Chim. Acta,358,285(1998)
    [31] S.Morais,G.S.Carvalho,J.P.Sousa, Electroanalysis 9,422(1997)
    [32] T. M. Flotrnce, J.Electroanal.Chem., 97,219(1979)
    [33] W. M. Moore and V. F. Gaylor, Anal.Chem., 49, 1386(1977)
    [34] E.Palacek,J.Osteryoung and R.A.Osteryoung, Anal.Chem., 54,1389 (1982)
    [35] E.Palacek,Anal.Lett.,13,331(1980)
    [36] J.Labuda,M.Buckova, L.Halamova, Electroanalysis 9, 1129(1997)
    [37] T.Ishiyama;T.Tanaka,Anal.Chem.,68,3789(1996)
    [38] T.H.Lu;H.Y.Yang;I.W.Sun,Talanta 49,59(1999)
    [39] K.Fanta;B.S.Chandravanshi,Electroanalysis 13,484(2001)
    [40] A.Merkoci;M.Vasjari;E.Fabregas;S.Alegret,Mikrochim.Acta,135, 29 (2000)
    [41] J.M.Zen;H.H.Chung;A.S.Kumar,Anal.Chim.Acta,421,189(2000)
    [42] B.Lange,C.M.G. van den Berg, Anal.Chim. Acta,418,33,(2000)
    [43] R.Kalvoda,Anal.Chim.Acta,138,11(1982)
    [44] J.M.Zen;J.S.Tang,Anal. Chem.,67,208(1995)
    [45] T.Ederth;P.Claesson;B.Liedberg,Langmuir.,14,4782(1998)
    [46] G.B.Signal,M.Mrksich;G.M.Whitesides, Langmuir.,13,2749(1997)
    [47] P.E.Laibinis;M.A.Fox;J.P.Folkers;G.M.Whitesides, Langmuir.,7,3167(1991)
    [48] T.Miwa;L.T.Jin;A.Mizuike,Anal.Chim.Acta,160,135(1984)
    [49] R.Ahamad;J.Barek;A.R.Yusoff;S.M.Sinaga;J.Zima,Electroanalysis 12, 1220 (2000)
    [50] J.M.Zen;Y.J.Chen;C.T.Hsu;Y.S.Tong, Electroanalysis 9,1009(1997)
    [51] J.M.Zen;J.W.Wu;Anal.Chem.68,3966(1996)
    [52] Y.Li;Electrochim.Acta,42,203(1997)
    [53] S.Komaba;M.Seyama;T.Momma;T.Osaka, Electrochim.Acta,42, 383 (1997)
    [54] R.R.Dalangin;H.Gunasingham,Anal.Chim.Acta,291,81(1994)
    [55] F.M.Matysik,S.Matysik;A.M.Oliveira Brett;C.M.A.Brett,Anal. Chem.,69,1651 (1997)
    [56] P.Ugo;L.Sperni; L.M.Moretto,Electroanalysis 9:(15),1153(1997)
    [57] J.M.Zen;I.L.Chn,Electroanalysis 9:(7),537(1997)
    [58] E.A.Osipova;V.E.Sladkov;A.I.Kamenev;V.M.Shkinev;K.E.Geckeler, Anal.Chim. Acta 404,231(2000)
    [59] B.Lindholm;M.Sharp,J.Electroanal.Chem.215,385(1986)
    [60] J.M.Zen;H.H.Chung;G.Ilangovan,Electroanalysis11,108(1999)
    [61] P.Ugo;S.Zampieri;L.M.Moretto;D.Paolucci,Anal.Chim.Acta 434,291 (2001)
    [62] P.Ugo;S.Zampieri;L.M.Moretto;G.A.Mazzocchin,Anal.Chim.Acta 305, 74 (1995)
    [63] P.Ugo;S.Zampieri;L.M.Moretto;G.A.Mazzocchin,Anal.Chim.Acta 273,229 (1993)
    [64] Ornella Abollino;Maurizio Aceto;Carmela La Gioia;Corrado Sarzanini;Edoardo Mentasti,Electroanalysis,14,1090(2002)
    [65] 方俊民、何子樂等;”有機合成”,藝軒圖書出版社,民國82年
    [66] Skoog;Holler;Nieman, ”Principles of Instrumental Analysis” 5Th Edition
    [67] 胡啟章,”電化學原理與方法”,五南圖書出版股份有限公司,2002年版

    下載圖示 校內:2004-08-11公開
    校外:2004-08-11公開
    QR CODE