簡易檢索 / 詳目顯示

研究生: 黃志豪
Huang, Chih-Haur
論文名稱: 高速管線式類比數位轉換器之設計及診斷技術
Design and Diagnosis of High Speed Pipelined A/D Converters
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 165
中文關鍵詞: 管線式類比數位轉換器
外文關鍵詞: Pipelined A/D Converters
相關次數: 點閱:85下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   管線式類比數位轉換器擁有高速的特性可以廣泛的應用在寬頻通訊及視訊系統。隨著系統單晶片的潮流,類比及數位電路整合在單一顆晶片中,其帶給類比及混合訊號積體電路設計許多挑戰,譬如說,低電壓設計,低訊號雜訊比,短通道長度影響及可測試性設計。由於這些趨勢,我們需要資料轉換器擁有以下特性: 高轉換速度,高解析度,低晶片面積及低功率消耗。
      本論文包含三個類比/數位轉換器設計及診斷之研究成果。在第一個研究當中,我們採用了台積電0.25微米互補式金氧半製程去設計及研製了一個10位元每秒取樣91百萬次的管線式類比數位轉換器。此晶片可應用於液晶顯示器控制晶片及高畫質數位電視,且其面積與操作電壓分別僅有2.173 及2.5伏特。模擬結果為在每秒91百萬次的操作頻率下可有60.4dB的訊號雜訊失真比及73dB無雜訊影響動態範圍,然而實際晶片量測結果則顯示在每秒40百萬次的操作頻率下只有41dB的訊號雜訊失真比及45dB無雜訊影響動態範圍。
      在設計高解析度管線式類比數位轉換器中,最大的困難點在於製程偏移所造成的電容不匹配問題,此問題將會導致非線性及諧波失真,進而限制類比數位轉換器的解析度。所以在第二個研究中,我們提出了一個新型的多重相位電容分離回授交換技術來克服因電容不匹配所造成的誤差。實驗的結果說明我們提出的技術擁有低微分型與積分型非線性誤差,及高訊號雜訊失真比與無雜訊影響動態範圍。在這裡,我們採用此技術設計並研製了一個12位元每秒取樣40百萬次的管線式類比數位轉換器。此晶片可應用於無線通訊,其操作電壓為2.5伏特,且整個晶片及多重相位電容分離回授交換技術之面積分別僅有3.916 及0.0765 。模擬結果為在每秒40百萬次的操作頻率下可有71dB的訊號雜訊失真比及80dB無雜訊影響動態範圍,而實際晶片量測結果則顯示在每秒35百萬次的操作頻率下可有61.7dB的訊號雜訊失真比及65dB無雜訊影響動態範圍。此研究之相關成果發表於2004年IEEE亞太積體電路與系統設計會議接受為正式論文。
      在第三個研究中,我們提出了一個新的管線式類比數位轉換器之低成本診斷方法,此方法運用了以下三種技術: (1)分時多工,(2)掃瞄式測試,(3)電壓控制震盪器量測。其中第三種技術是用來測試取樣保持電路及乘法式數位類比轉換器輸出之精確性,其具有對製程偏移及雜訊所造成之錯誤不敏感的特性。由於此診斷策略僅需低複雜度及低晶片面積之內建式自我測試電路,所以我們所提出的方法具有低成本且低功率消耗的特性。我們以十二位元類比數位轉換器為例,在TSMC 0.25μm CMOS 1P5M製程下針對上述測試策略架構進行設計及模擬,經由實驗結果可驗証本研究所提出的測試策略具有低成本及低晶片面積之診斷特性。此研究之相關成果發表於2004年IEEE亞洲測試會議選為正式論文。

      Pipelined A/D Converters (ADCs) have intrinsic high-speed characteristics and are commonly used in wideband communication and video systems. With the trends of SOC, both analog and digital circuits are implemented on the same silicon, which will bring many challenges for analog and mixed-signal design, such as lower supply voltages, lower SNR, short channel effects and design for testability. Due to theses trends, there is an urgent necessity to design data converters with high conversion rate, high resolution, low area and low power consumption.
      In this thesis, we have accomplished three research results on the design and diagnosis of ADCs. In the first work, a 10-bit 91MS/s pipelined A/D converter has been designed and implemented with the TSMC 0.25um CMOS 1P5M process. The applications of this ADC are focused on the high resolution LCD controller and the HDTV. The chip area and supply voltage of the chip are only 2.173 and 2.5V. The simulation results show that the SNDR and SFDR are 60.4dB and 73dB at 91 MHz sampling frequency. However, the measured results show that the SNDR and SFDR are only 41dB and 45dB at 40 MHz sampling frequency, respectively.
      The main limitation of high-resolution pipelined ADCs is capacitor mismatch, which will cause non-linearity and harmonic distortion and thus often limit the resolution of ADCs. So in the second work, we propose a new technique, the Multiple-Phase Capacitor-Splitting Feedback Interchange (MP-CSFI) technique, to overcome this problem. The experimental results show that the proposed scheme has the advantages of low DNL, low INL, high SNDR and SFDR. A 12-bit 40MS/s pipelined ADC with the MP-CSFI technique has been designed and fabricated. The supply voltage is 2.5V, and chip areas of the 12-bit ADC and MP-CSFI technique are only 3.916 and 0.0765 , respectively. The simulation results show that the SNDR and SFDR are 71dB and 80dB at 40 MHz sampling frequency. The measured results show that the SNDR and SFDR are 61.7dB and 65dB at 35 MHz sampling frequency, respectively. This work has been accepted by the 2004 IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS'04) as a full paper.
      In the third work, we propose a novel low-cost diagnosis methodology for pipelined A/D converters. The methodology manipulates three techniques in the diagnosis process: (1) time-division-multiplexing (TDM), (2) scan based testing, and (3) VCO based measurement. The last technique is developed to diagnose the most critical mixed-signal functional blocks, e.g. SHA and MDAC in the pipelined ADC. It provides a great capability to distinguish signals with very small voltage difference. Also it is insensitive to process variations and immune to noise induced errors. Furthermore, the diagnosis methodology is power- and area- efficient because it only needs low-complexity and low-area BIST circuits to accomplish the full diagnosis process. A 12-bit pipelined A/D converter with the proposed diagnosis scheme is designed and simulated using the TSMC 0.25um 1P5M technology to demonstrate the effectiveness of the proposed methodology. This work has been accepted by the 2004 IEEE Asian Test Symposium (ATS'04).

    TABLE OF CONTENTS Acknowledgment……………………………………………………………I Abstract………………………………………………….………..….……..II Table of Contents………………………………………………...……….VII List of Tables…………………………………………………..…………XIII List of Figures……………………………………….…………….………XV . Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Applications of Analog-to-Digital Converters 3 1.3 Organization of Thesis 7 Chapter 2 Fundamentals of Pipelined A/D Converters 9 2.1 Introduction 9 2.2 ADC Performance Metrics 9 2.2.1 Resolution 10 2.2.2 Signal to Noise Ratio (SNR) 10 2.2.3 Signal to Noise + Distortion Ratio (SNDR) 12 2.2.4 Dynamic Range (DR) 12 2.2.5 Spurious Free Dynamic Range (SFDR) 13 2.2.6 Nonlinearity 13 2.3 Review of ADC Architectures 14 2.3.1 Flash ADC 14 2.3.2 Two-Step ADC 15 2.3.3 Folding and Interpolating ADC 16 2.3.4 Successive Approximation ADC 17 2.3.5 Sigma-Delta ADC 19 2.3.6 Pipelined ADC 22 2.3.7 Comparison among ADC Architectures 23 2.4 Key Building Blocks of Pipelined ADC 24 2.5 Digital Error Correction Technique 27 2.6 Error Sources in Pipelined Stage 29 2.6.1 Thermal Noise 29 2.6.2 Comparator Offsets 30 2.6.3 Non-ideal DAC Reference Levels 31 2.6.4 Stage Gain Error 32 2.7 Pipelined Stage Accuracy Requirements 34 2.8 Summary 37 Chapter 3 The Design and Implementation of 10-bit 91MS/s Pipelined A/D Converter 39 3.1 Previous Work about High-Speed Pipelined ADCs 39 3.1.1 Introduction 39 3.1.2 Parallel Pipelined ADC Technique 40 3.1.2.1 Timing Mismatch 42 3.1.2.2 Channel Offset 43 3.1.2.3 Channel Gain Mismatch 43 3.1.3 Selecting Stage Resolution 44 3.1.4 Summary 48 3.2 The Design and Implementation of 1.5 bit/stage Pipelined A/D Converter 48 3.2.1 Introduction 48 3.2.2 1.5 bit/stage System Architecture of Pipelined ADC 49 3.2.2.1 Operational Principle 49 3.2.2.2 Behavior Model of Pipelined ADC 52 3.2.2.3 Non-ideality Considerations 54 3.2.2.4 Summary 57 3.2.3 Circuit Design and Implementation 57 3.2.3.1 Sample and Hold Amplifier 57 3.2.3.2 Sub-Analog-to-Digital Converter 59 3.2.3.3 Multiplying Digital-to-Analog Converter 60 3.2.3.4 Operational Amplifier 61 3.2.3.5 Comparator 64 3.2.3.6 Digital Error Correction 65 3.2.3.7 Clock Generator 65 3.2.3.8 Chip Simulations 66 3.2.3.9 Layout and Floor Plan 71 3.2.3.10 Summary 72 3.3 Test Setup and Experimental Results 72 3.3.1 The Package and Pin Configuration 72 3.3.2 Test Setup 74 3.3.3 Experimental Results 76 3.3.4 Summary 79 3.4 Conclusions 80 Chapter 4 The Design and Implementation of 12-bit 40MS/s Pipelined A/D Converter using MP-CSFI Technique 81 4.1 Previous Work about High-Speed and High- Resolution Pipelined ADCs 81 4.1.1 Introduction 81 4.1.2 Trimming Technique for Pipelined ADCs 82 4.1.3 Capacitor Error-Averaging Technique for Pipelined ADCs 83 4.1.4 Digital Calibration Technique for Pipelined ADCs 85 4.1.5 Commutated Feedback-Capacitor Switching (CFCS) Technique for Pipelined ADCs 88 4.1.6 Summary 91 4.2 The Design and Implementation of MP-CSFI Pipelined A/D Converter 92 4.2.1 Introduction 92 4.2.2 Proposed Multiple-Phase Capacitor-Splitting Feedback Interchange (MP-CSFI) Technique 93 4.2.3 MP-CSFI System Architecture of Pipelined ADC 96 4.2.3.1 Operational Principle 96 4.2.3.2 Behavior Model of MP-CSFI Pipelined ADC 98 4.2.3.3 Simulation Results and Comparisons 99 4.2.3.4 Summary 105 4.2.4 Circuit Design and Implementation 106 4.2.4.1 Sample and Hold Amplifier 106 4.2.4.2 Dynamic Comparator 107 4.2.4.3 Operational Amplifier 109 4.2.4.4 Chip Simulations 110 4.2.4.5 Layout and Floor Plan 114 4.2.4.6 Summary 115 4.3 Test Setup and Experimental Results 115 4.3.1 The Package and Pin Configuration 115 4.3.2 Test Setup 117 4.3.3 Experimental Results 119 4.3.4 Summary 123 4.4 Conclusions 123 Chapter 5 A Low-Cost Diagnosis Methodology For Pipelined A/D Converters 125 5.1 Background and Previous Work 125 5.1.1 Introduction 125 5.1.2 Histogram Test Technique 126 5.1.3 BIST for Digital-to-Analog Converters and Analog-to- Digital Converters 126 5.1.4 MDAC and Stage Testing for Pipelined ADCs 129 5.1.5 Frequency Domain Testing 131 5.1.6 Summary 132 5.2 A Low-Cost Diagnosis Scheme 132 5.2.1 Introduction 132 5.2.2 Architecture of Pipelined ADCs 133 5.2.3 Low-Power and Low-Area VCO Based Measurement Scheme 134 5.2.3.1 VCO Based Measurement Method 134 5.2.3.2 Linear VCO 136 5.2.3.3 Summary 137 5.2.4 Diagnosis Principle 137 5.2.4.1 Diagnosis Flow and Techniques 137 5.2.4.2 Diagnosis Architecture 145 5.2.4.3 Summary 146 5.3 Simulation and Experimental Results 146 5.3.1 Linear VCO 146 5.3.2 VCO Based Measurement Scheme 147 5.3.2.1 SHA Test 147 5.3.2.2 Stage Test 149 5.3.3 Layout Floor Plan 151 5.3.4 Summary 152 5.4 Conclusions 152 Chapter 6 Conclusions and Future Work 153 6.1 Design Summary 153 6.1.1 Conclusions 153 6.1.2 Future Work 154 6.2 Testing Summary 155 6.2.1 Conclusions 155 6.2.2 Future Work 156 Bibliography…………………………………………………………………………..157

    [1] Data sheet of “PAS202B VGA color CMOS image sensor,” PixArt Imaging Inc.,
    pp.1-4, February 2001.
    [2] Data sheet of “AD9887, dual interface for flat panel displays,” Analog Devices Inc., 2001.
    [3] J. Jussila, J. Ryynänen, K. Kivekäs, L. Sumanen, A. Pärssinen, K. Halonen, “A
    22-mA 3.0-dB NF Direct Conversion Receiver for 3G WCDMA,” IEEE J. Solid-
    State Circuits, vol. 36, no. 12, pp. 2025–2029, Dec. 2001.
    [4] David A. Johns, Ken Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, Inc. 1997.
    [5] R. Jacob Baker, “CMOS Mixed-Signal Circuit Design,” The Institute of Electrical and Electronics Engineering, Inc. 2002.
    [6] Phillip E. Allen, Douglas R. Holberg, “CMOS Analog Circuit Design,” Oxford University Press, Inc. 2002.
    [7] Behzad Razavi, “Principle of Data Conversion System Design,” AT & T. 1995.
    [8] K. J. McCall, M. J. Demler, and M. W. Plante, “A 6-bit 125 MHz CMOS A/D
    Converter,” in Proc. CICC, May 1992, pp. 16.8.1-16.8.4.
    [9] J. Doernberg, P. R. Gray, and D. A. Hodges, “A 10-bit 5-Msample/s CMOS
    Two-Step Flash ADC,” IEEE J. Solid-State Circuits, Vol. 24, No. 2, Apr. 1999, pp. 241-249.
    [10] B. Razavi and B. A. Wooley, “A 12-b 5-Msample/s Two-Step CMOS ADC,”
    IEEE J. Solid-State Circuits, Vol. 27, No. 12, Dec. 1992, pp. 1667-1678.
    [11] M. H. Liu and S. I. Liu, “An 8-Bit 10 MS/S Folding and Interpolating ADC
    Using the Continuous-Time Auto-Zero Technique,” IEEE J. Solid-State Circuits,
    Vol. 36, No. 1, Jan. 2001, pp. 122-128.
    [12] Steven R. Norsworthy, Richard Schreier and Gabor C. Temes, “Delta-Sigma Data Converters,” The Institute of Electrical and Electronics Engineering, Inc. 1997.
    [13] P. C. Yu and H. S. Lee, “A 2.5-V, 12-B, 5-Msample/S Pipelined CMOS ADC,”
    IEEE J. Solid-State Circuits, Vol. 31, No. 12, Dec. 1996, pp. 1854-1861.
    [14] Hae-Sung Lee, " A 12-b 600ks/s Digitally Self Calibrated Pipelined Algorithmic ADC," IEEE J. Solid State Circuits, Vol. 29, No. 4, pp 509-515, April 1994.
    [15] Larry Singer, Stacy Ho, Mike Timko, dan Kelly, “A 12b 65Msample/s CMOS ADC with 82dB SFDR at 120MHz,” ISSCC 2000, Session 2, Paper MP 2.3, 2000.
    [16] B. Ginetti, P. Jespers, “A 1.5 MS/s 8-bit Pipelined RSD A/D Converter,” ESSCIRC Dig. Tech. Papers, pp. 137–140, Sep. 1990.
    [17] B. Ginetti, P. G. A. Jespers, A. Vandemeulebroecks, “A CMOS 13-b cyclic RSD
    A/D converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 957–965, Jul. 1992.
    [18] S. H. Lewis, H. S. Fetterman, G. F. Gross, Jr., R. Ramachandran, T. R. Viswanathan, “A 10-b 20-Msample/s Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 351–358, Mar. 1992.
    [19] Jason Hsieh, “Nyquist-Rate A/D Converter Design,” CIC training manual, 2002.
    [20] “High Speed A/D Converters,” Kluwer Academic Publishers, 2001.
    [21] Zheng-Zhong Lin, “A 14-bit Recirculating A/D converter with 60MHz Clock Rate,” NCKU Master Thesis, 2000.
    [22] S. H. Lewis, “Optimizing the Stage Resolution in Pipelined, Multistage,
    Analog-to-Digital Converters for Video-Rate Applications,” IEEE Trans. Circuits and Systems–II, vol. 39, pp. 516–523, Aug. 1992.
    [23] W. Yang, D. Kelly, I. Mehr, M. T. Sayuk, L. Singer, “A 3-V 340-mW 14-b 75-
    MSample/s CMOS ADC with 85-dB SFDR at Nyquist Input,” IEEE J. Solid-
    State Circuits, vol. 36, pp. 1931–1936, Dec. 2001.
    [24] A. Abo, “Design for Reliability of Low-Voltage, Switched-Capacitor Circuits,”
    PhD Thesis, University of California, Berkeley, May 1999.
    [25] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Analysis and Design of
    Analog Integrated Circuits” Fourth Edition, John Wiley & Sons, Inc., 2001.
    [26] C. S. G. Conroy, “A high-speed parallel pipeline A/D converter technique in CMOS”, Memorandum No. UCB/ERL M94/9, Electronics Research Laboratory, U. C. Berkeley, February 1994
    [27] W. Black and D. A. Hodges, “Time Interleaved Converter Arrays,” IEEE J. Solid-State Circuits, vol. SC-15, pp. 1022-1029, Dec. 1980.
    [28] A. Montijo and K. Rush, “Accuracy in Interleaved ADC Systems,” Hewlett-Packard J., pp. 38-46, Oct. 1993.
    [29] Y. C. Jenq, “Digital Spectra of Nonuniformly Sampled Signals: Fundamentals and High-Speed Waveform Digitizers,” IEEE Trans. Instrum. Meas., vol. 37, pp. 245-251, June 1988.
    [30] T. B. Cho and P. R. Gray, “A 10bit, 20MS/s, 35mW pipeline A/D converter,” in Proc. IEEE Custom Integrated Circuits Conf., May 1994, pp 23.2.1-23.2.4.
    [31] ADS900 Data Sheet “10-Bit, 20MHz +3V Supply Analog-to-Digital Converter,” 1997 Burr-Brown Corporation.
    [32] S. H. Lewis and P. R. Gray, “A Pipelined 5-Msamples/s 9-bit Analog-to-Digital
    Converter,” IEEE J. Solid-State Circuits, vol. SC-22, Dec. 1987, pp. 954-961.
    [33] L. Lin, “Design Techniques for Parallel Pipelined ADC,” UC Berkeley MS
    Thesis, May 1996.
    [34] Paul Stulik “ Design Issues High Speed, Moderate Resolution Pipelined Analog to Digital Converters”, Washington State University May, 1999
    [35] G. Yin, F. Op’t Eynde, W. Sansen, “A High-Speed CMOS Comparator with 8-b resolution,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 2, pp. 208-211, Feb. 1992.
    [36] Stephen H. Lewis, R. Ramachandram , W. Martin Snlgrove “Indirect Testing of
    Digital-Correction Circuits in Analog-to-Digital Converters with Redundancy” IEEE Transactions on Circuits and System II, vol. 42, no. 7, pp437~439 Jul. 1995.
    [37] Alan Hastings, “The ART of ANALOG LAYOUT,” Prentice-Hall, Inc, 2001.
    [38] Andrew M. Abo “Design for Reliability of Low-voltage Switched-Capacitor Circuits” Ph.D Dissertation, Spring. 1999
    [39] Yuh-Min Lin Beomsup Kim Paul R. Gray ”A 13-b 2.5Mhz Self-Calibrated Pipelined A/D Converter in 3mm CMOS” IEEE J. Solid-State Circuits, Vol. 26, no. 4, pp628~635 Apr. 1991.
    [40] David Cline, “Noise, Speed and Power Trade-offs in Pipelines Analog to Digital Converters,” Ph.D. Dissertation, University of California, Berkeley. 1995.
    [41] Yun Chiu “Inherently Linear Capacitor Error-Averaging Techniques for Pipelined A/D Conversion:” IEEE Tran. Circuits and systems-II Analog and Digital Signal Processing vol. 47, pp. 229~232 Mar. 2000.
    [42] Bang-Sup Song, Michael F. Tompsett, Kadaba R. Lakshmikumar “A 12-bit 1-Msample/s Capacitor Error-Averaging Pipelined A/D Converter” IEEE J. Solid-State Circuits vol. 23, no. 6, Dec. pp.1324~1333 1988.
    [43] S.-Y. Chuang and T. L. Sculley, “A digitally self-calibrating 14-bit 10-MHz CMOS pipelined A/D converter,” IEEE Journal of Solid-State Circuits, pp.674–683, June 2002.
    [44] Paul C. Yu and Hae-Seung Lee, “A Pipelined A/D Conversion Technique with Near-Inherent Monotonicity,” IEEE Trans.on Circuits and System. II, vol.42, no..7, pp.500 ~ 502. Jul. 1995.
    [45] Jungwook Yang Hae-Seung Lee “A CMOS 12-bit 4MHz Pipelined A/D Converter with Commutative Feedback Capacitor” IEEE Custom Integrated Circuits Conference 20.5.1~20.5.4 1996.
    [46] Paul C. Hae-Seung Lee “ A 2.5v 12-b 5 Msample/s Pipelined CMOS ADC”IEEE J. Solid-State Circuits vol. 31, no. 12, pp1854~1861 Dec. 1996.
    [47] M. Mahoney, DSP-Based Testing of Analog and Mixed-Signal Circuits. Computer Society Press. IEEE, Washington, D.C., 1987.
    [48] G. M. Yin, F. O. Eynde, and W. Sansen, A high-speed CMOS comparator with
    8-b resolution ," IEEE J. Solid-State Circuits, vol. SC-27, no. 2, pp. 208-211, Feb. 1992.
    [49] T. B. Cho, and p. R. Gray, A 10 b, 20 Msample/s, pipelined A/D converter ,"
    IEEE J. Solid-State Circuits, vol. SC-30, pp. 166-172, Mar. 1995.
    [50] G. Roberts, “Metrics, Techniques and Recent Developments in Mixed-Signal Testing,” International Conference on Computer Aided Design, pp. 514–521, 1996.
    [51] M. Burns, and G. Roberts, An Introduction to Mixed-Signal IC Test and Measurement, Oxford University Press, 2001.
    [52] M. Renovell, F. Azais, S. Bernard, and Y. Bertrand, “Hardware Resource Minimization for Histogram-based ADC BIST,” Proc. of 18th IEEE VLSI Test Symposium, pp. 247 -252, 2000.
    [53] F. Azais, S. Bernard, Y. Bertrand, and M. Renovell, “Implementation of a Linear Histogram BIST for ADCs,” Proc. of Design, Automation and Test in Europe, pp. 590 -595, 2001.
    [54] F. Azais, S. Bernard, Y. Bertrand, and M. Renovell, “Towards an ADC BIST Scheme Using the Histogram Test Technique,” Proc. of IEEE European Test Workshop, pp. 53 -58, 2000.
    [55] J.–L. Huang, C.-K. Ong, and K.-T. Cheng, “A BIST Scheme for On-chip ADC and DAC Testing,” Proc. of Design, Automation and Test in Europe Conference and Exhibition, pp. 216 –220, 2000.
    [56] K. Arab, B. Kaminska, and M. Sawan, “On Chip Testing Data Converters Using Static Parameters”, IEEE Transaction on VLSI Systems, pp. 409–419, 1998.
    [57] K. Arabi, B. Kaminska, and J. Rzeszut, “BIST for D/A and A/D converters,” IEEE Design & Test of Computers, pp. 40 –49, 1996.
    [58] M. Ehsanian, B. Kaminska, and K. Arabi, “A New Built-In-Self-Test Approach for Digital-to-Analog and Analog-to-Digital Converters”, Proc. of International Conference Computer Aided Design, pp. 491–494, 1994.
    [59] E. Peralias, A. Rueda, J. A. Prieto, and J. L. Huertas, “DfT and On-line Test of High-Performance Data Converters: A Practical Case,” International Test Conference, pp. 534–540, 1998.
    [60] Peralias, E.J.; Rueda, A.; Huertas, J.L.;”Structural testing of pipelined analog to digital converters,” Circuits and Systems, 2001. ISCAS 2001.
    [61] Peralias, E.; Rueda, A.; Huertas, J.L.;”CMOS pipelined A/D converters with concurrent error detection capability,” Electronics, Circuits and Systems, 1998.
    [62] L. Benetazzo, C. Narduzzi, C. Offelli, and D. Petri, “A/D converter performance analysis by a frequency-domain approach”, IEEE Transactions on, Instrumentation and Measurement, pp. 834 –839, 1992.
    [63] S. K. Sunter and N. Nagi, “A Simplified Polynomial-Fitting Algorithm for DAC and ADC BIST,” Proc. of International Test Conference, pp. 120-126, 1995.
    [64] M. F. Toner and G. W. Roberts, “A BIST scheme for a SNR, Gain Tracking and Frequency Response Test of a Sigma-Delta ADC,” IEEE Transactions Circuits & Systems II , pp. -15, 1995.
    [65] M. F. Toner and G. W. Roberts, “A Frequency Response, Harmonic Distortion, and Intermodulation Distortion Test for BIST of a Sigma-Delta ADC,” IEEE Trans. Circuits & Systems II , pp. 608-613, 1996.
    [66] S.-J. Chang, C. L. Lee and J. E Chen, "A Low Cost BIST Scheme for DAC Testing," Electronics Letters, vol. 38, No. 15, pp.776-777, 2002.
    [67] Murmann, B. and Boser, B.E., “A 12 b 75 MS/s Pipelined ADC using Open-loop Residue Amplification,” International Solid-State Circuits Conference, pp. 328–497, 2003.

    下載圖示 校內:2008-07-13公開
    校外:2010-07-13公開
    QR CODE