| 研究生: |
白妤馨 Pai, Yu-Hsin |
|---|---|
| 論文名稱: |
混合物理與數值模擬於異質材料溫鍛製程發展之研究 Study on hybrid physical and numerical simulations for warm forging process development of different materials |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 有限元素數值模擬 、物理模擬 、鈦合金 、溫鍛 、製程規劃 |
| 外文關鍵詞: | Finite element numerical simulation, Physical simulation, Titanium alloy, Warm forging, Process development |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以兩種材料-不銹鋼SUS304與鈦合金Ti-6Al-4V進行混合物理與數值模擬,而再驗證比對模擬結果,確認數值模型之真實性與適用性後,便藉由此數值模型評估鈦合金Ti-6Al-4V製程參數對溫鍛製程之影響。
為了能夠針對難以鍛造又缺乏實際生產經驗的材料鈦合金Ti-6Al-4V進行溫鍛製程規劃與評估,本研究採用混合物理模擬與有限元素數值模擬兩種模擬的新模擬架構。此模擬方式是先利用業界常用的不銹鋼SUS304進行物理模擬的實驗,確立整體溫鍛製程的實驗架構,並了解實際製程參數的影響,再建立不銹鋼SUS304溫鍛製程之有限元素數值模型,以其實驗與模擬結果進行比對驗證,確立有限元素數值模型在此溫鍛製程下的真實性,而後將有限元素數值模型應用於目標材料鈦合金Ti-6Al-4V上,再以物理模擬實驗對有限元素數值模擬做驗證,確認此鈦合金溫鍛製程之有限元素數值模型及參數值與真實情況相符合,最後可藉由此模型進行不同製程參數的製程模擬預測,而得到鈦合金Ti-6Al-4V溫鍛的製程設計評估結果。
To evaluate the effects of process parameters in Ti-6Al-4V warm forging process, this thesis proposed a new process development model. The model consists of physical and numerical simulation of stainless steel SUS304 and titanium alloy Ti-6Al-4V. With mutual verification of these two simulations, the simulation results can be verified and the applicability of the numerical simulation can also be assured.
First step of the new analysis model is establishing the physical simulation experiment of SUS304. With this step, the warm forging process can be set up and the effects of process parameters can be clarified. Then the numerical simulation model of SUS304 can be established precisely because the details of the warm forging process are verified in the physical simulation experiment. By comparing the results of physical and numerical simulation, the result of the numerical simulation of warm forging process can be confirmed. Therefore, the numerical simulation of SUS304 can be changed into the numerical simulation of Ti-6Al-4V. Not only the numerical simulations were performed but also the physical simulation experiment of Ti-6Al-4V. Then by comparing the results of physical and numerical simulation of Ti-6Al-4V, the accuracy of numerical simulation of Ti-6Al-4V can be confirmed. With the verified numerical simulation model of Ti-6Al-4V, the effects of different process parameters can be predicted and the process parameters of Ti-6Al-4V warm forging process can be obtained finally.
[1] Tabei, A., Abed, F. H., Voyiadjis, G. Z. and Garmestania, H. "Constitutive modeling of Ti-6Al-4V at a wide range of temperatures and strain rates", European Journal of Mechanics - A/Solids, Volume 63, Pages 128-135, May–June 2017
[2] Chen, G., Ren, C., Qin, X. and Li, J. "Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling" ,Materials & Design, Volume 83, Pages 598-610, 15 October 2015
[3] Lee, W. S. and Lin, C. F. "Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures", Materials Science and Engineering: A, Volume 241, Issues 1–2, Pages 48-59, January 1998
[4] 林煥章,“寬廣溫度與應變率範圍下之Ti-6Al-4V鍛造特性之研究”,國立成功大學機械學系博士論文,1997
[5] Bruschi, S., Poggio, S., Quadrini, F. and Tata, M. E. "Workability of Ti–6Al–4V alloy at high temperatures and strain rates", Materials Letters, Volume 58, Issues 27–28, Pages 3622-3629, November 2004
[6] Seshacharyulu, T., Medeiros, S. C., Frazier, W. G. and Prasad, Y. V. R. K. "Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations", Materials Science and Engineering: A, Volume 284, Issues 1–2, Pages 184-194, 31 May 2000
[7] Khan, A. S., Kazmi, R., Farrokh, B. and Zupan, M. "Effect of oxygen content and microstructure on the thermo-mechanical response of three Ti–6Al–4V alloys: Experiments and modeling over a wide range of strain-rates and temperatures", International Journal of Plasticity, Volume 23, Issue 7, Pages 1105-1125, July 2007
[8] 許豐裕, "鈦合金非恆溫鍛造之製程分析",國立成功大學機械學系碩士論文,1993
[9] 施博文, "鈦合金熱模鍛造之製程參數特性研究",國立成功大學機械學系碩士論文,1993
[10] 鄭訓祺, "鈦合金恆溫鍛造製程參數特性分析",國立成功大學機械學系碩士論文,1995
[11] 許進隆, "鈦合金高溫高應變率塑流應力特性及鍛粗模擬之研究",國立成功大學機械學系碩士論文,1995
[12] 張家銘, "Ti-6Al-4V鍛造製程參數與特性之關聯性研究",國立成功大學機械學系碩士論文,1999
[13] 溫志中, "鍛造製造之物理模擬",國立成功大學機械學系碩士論文,1986
[14] 潘敏俊, "階梯形鍛件之塑性力學分析與粗鍛胚設計之評估",國立成功大學機械學系碩士論文,1990
[15] Vazquez, V. and Altan, T. "New concepts in die design — physical and computer modeling applications", Journal of Materials Processing Technology, Volume 98, Issue 2, Pages 212-223, 29 January 2000
[16] Liu, Y., Du, K., Zhan, M., Yang, H. and Zhang, F., "Physical modeling of blade forging", Journal of Materials Processing Technology, Volume 99, Issues 1–3, Pages 141-144, 1 March 2000
[17] 簡大偉, "應用物理模擬機於錳硼鋼之高溫可成形性研究",國立成功大學機械學系碩士論文,2014
[18] 陳熹隸, "高週波基礎理論與應用",全華科技圖書股份有限公司,1995
[19] Donachie, M. J. "Titanium: a technical guide", ASM International, 2000
[20] Hua, J., Wang, W., and Tian, J." Study on the Optical Electrochemical Maching of WC Alloy",SURFACE TECHNOLOGY, Vol.31, NO.5,2002
[21] Curtis, F. W. “High-frequency Induction Heating” U.S.A.: McGraw–Hill Company, Inc., 1950
校內:2023-07-01公開