簡易檢索 / 詳目顯示

研究生: 吳俊達
Wu, Jyun-Da
論文名稱: 車型機器人之多功能智慧型停車控制器設計與實現
Design and Implementation of the Multi-Functional Intelligent Autonomous Parking Controller for Car-Like Mobile Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 80
中文關鍵詞: 停車車型機器人NIOS超音波感測器
外文關鍵詞: car like mobile robot, ultrasonic sensor, parking, NIOS
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討如何設計與實現具多功能智慧型停車功能之車型機器人。此車型機器人依據個人數位助理(PDA)所下命令、整合超音波感測器陣列所得資訊以了解本身與外界環境之關係,利用Nios嵌入式系統來整合計算這些資料,並運用模糊控制法來決定車型機器人之行為。在論文中,首先描述整個車型機器人之硬體架構與設定,再分別對車體上的Nios嵌入式系統發展版、直流馬達單元、伺服馬達單元、驅動電路、超音波感測器、PDA及無線模組等作分別的介紹與說明。接著探討如何以超音波感測器利用雙耳法則(Binaural method)做反射物類型的判別與定位及改進使用上的盲點。再者提出以模糊邏輯控制法則來達成停車控制及障礙物偵測與閃避,其中包含路徑追隨、路邊停車、車庫停車、停車路徑之障礙物偵測與應變及行進路徑之障礙物偵測與閃避。最後以實驗結果展現此多功能智慧型停車控制器之可行性與實用性。

    This thesis presents the design and implementation of the multi-functional intelligent autonomous parking controller and accomplishes it in a car-like mobile robot (CLMR). This CLMR possesses the function to accept the command from the personal digital assistant (PDA), and estimates the environment by integration of ultrasonic sensors array. We utilize the Nios embedded system development board to compute these data and decide the reactive behavior by the fuzzy logic control (FLC).
    In the thesis, we first describe the system architecture of the CLMR, which contains the reconstruction of the chassis of the CLMR, Nios development board, DC motor unit, servo motor unit, driver circuit, ultrasonic sensors, PDA, and wireless module. Secondly, we address how to determine the type and position of the reflector by ultrasonic sensors with the binaural method, and improve the blind spot of detection. Furthermore, we develop the intelligent parking control and obstacle avoidance method, which are based on the fuzzy logic control. We propose several modes including wall-following mode, parallel-parking mode, garage-parking mode, and obstacle avoidance mode, which can detect the obstacles on the forward path or the parking lot and deal with the contingency. Finally, it is perceived that our intelligent multi-functional intelligent autonomous parking controller is feasible and effective from the practical experiments.

    摘 要  Ⅰ Abstract  Ⅱ Acknowledgment Ⅲ CONTENTS  IV LIST OF FIGURES VI LIST OF TABLES IX Chapter 1. Introduction 1 1.1 Preliminary    1 1.2 Thesis Organization 3 Chapter 2. Hardware Architecture of A Car-Like Mobile Robot 4 2.1 Introduction                     4 2.2 Entire hardware and system architecture of the CLMR 5 2.2.1 The mechanism of the CLMR             7 2.2.2 Nios Embedded System Development Board       7 2.2.3 DC Motor Unit 9 1) DC motor mechanism 9 2) DC motor Driver  10 3) DC motor speed control 12 2.2.4 Servo Motor Unit 13 2.2.5 Ultrasonic Sensor Module 14 2.2.6 Personal Digital Assistant 17 2.2.7 Wireless Module     18 2.3 Summary          19 Chapter 3. Ultrasonic Sensing System for the CLMR 20 3.1 Introduction                20 3.2 The Arrangement of the Ultrasonic Sensors Array 22 3.3 Firing Interval of the Ultrasonic Sensors  22 3.4 Determination of the Reflection Type and Position by Binaural Method 24 3.4.1 Basic Sensing Principle of the Ultrasonic Sensor      25 3.4.2 Position Calculation of a Reflector by Binaural Method   26 3.4.3 Determination of Different Type Reflectors by Binaural Method 29 3.5 Summary                            32 Chapter 4. Fuzzy Logic Control Design and Behavior Modes of the CLMR 33 4.1 Introduction       33 4.2 Fuzzy Logic Controller  34 4.2.1 FI    35 4.2.2 DML    35 4.2.3 KB    35 4.2.4 DFI    36 4.3 Behavior Fusion Design  37 4.4 Fuzzy Wall-Following Controller Design (FWFC) 40 4.4.1 Design of Right-Side FWFC 42 4.4.2 Design of Left-Side FWFC 46 4.5 Parking and Obstacle Avoidance Controller Design 48 4.5.1 Fuzzy Parallel-Parking Mode 48 4.5.2 Fuzzy Garage-Parking Mode 52 4.5.3 Obstacle Avoidance Mode 57 4.5.4 Autonomous Mode 60 4.6 Summary     62 Chapter 5. Experimental Results 63 5.1 Introduction   63 5.2 Experimental Results 64 5.3 Summary     73 Chapter 6. Conclusion and Future Works 74 6.1 Conclusion 74 6.2 Future Works 75 References 76 Biography  80

    [1]M. Sugeno and K. Murakami, “An experimental study on fuzzy parking control using a model car,” in Industrial Applications of Fuzzy Control, M. Sugeno, Ed. North-Holland, The Netherlands, 1985, pp. 105–124.
    [2]M. Sugeno, T. Murofushi, T. Mori, T. Tatematsu, and J. Tanaka, “Fuzzy algorithmic control of a model car by oral instructions,” Fuzzy Sets Syst., vol. 32, pp. 207–219, 1989.
    [3]A. Ohata and M. Mio, “Parking control based on nonlinear trajectory control for low speed vehicles,” in Proc. IEEE Int. Conf. Industrial Electronics, 1991, pp. 107–112.
    [4]S. Yasunobu and Y. Murai, “Parking control based on predictive fuzzy control,” in Proc. IEEE Int. Conf. Fuzzy Systems, vol. 2, 1994, pp. 1338–1341.
    [5]W. A. Daxwanger and G. K. Schmidt, “Skill-based visual parking control using neural and fuzzy networks,” in Proc. IEEE Int. Conf. System, Man, Cybernetics, vol. 2, 1995, pp. 1659–1664.
    [6]A. Tayebi and A. Rachid, “A time-varying-based robust control for the parking problem of a wheeled mobile robot,” in Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp. 3099–3104.
    [7]M. C. Leu and T. Q. Kim, “Cell mapping based fuzzy control of car parking,” in Proc. IEEE Int. Conf. Robotics Automation, 1998, pp.2494–2499.
    [8]H. An, T. Yoshino, D. Kashimoto, M. Okubo, Y. Sakai, and T. Hamamoto, “Improvement of convergence to goal for wheeled mobile robot using parking motion,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1999, pp. 1693–1698.
    [9]B. Shirazi and S. Yih, “Learning to control: a heterogeneous approach,” in Proc. IEEE Intl. Symp. Intelligent Control, 1989, pp. 320–325.
    [10]M. Ohkita, H. Mitita, M. Miura, and H. Kuono, “Traveling experiment of an autonomous mobile robot for a flush parking,” in Proc. 2nd IEEE Conf. Fuzzy System, vol. 2, Francisco, CA, 1993, pp. 327–332.
    [11]D. Lyon, “Parallel parking with curvature and nonholonomic constraints,” in Proc. Symp. Intelligent Vehicles, Detroit, MI, 1992, pp. 341–346.
    [12]R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Trans. Automat. Contr., vol. 38, pp. 700–716, May 1993.
    [13]J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Trans. Robot. Automat., vol. 10, pp. 577–593, Oct. 1994.
    [14]I. E. Paromtchik and C. Laugire, “Motion generation and control for parking an autonomous vehicle,” in Proc. IEEE Conf. Robotics Automation, vol. 4, Minneapolis, MN, 1996, pp. 3117–3122.
    [15]C. Laugier, T. Fraichard, I. E. Paromtchik, and P. Garnier, “Sensor-based control architecture for a car-like vehicle,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1998, pp. 216–222.
    [16]D. Leitch and P. J. Probert, “New techniques for genetic development of a class of fuzzy controllers,” IEEE Trans. Syst., Man, Cybern. C, vol. 28, pp. 112–123, Feb. 1998.
    [17]L. Dorst, “Analyzing the behaviors of a car: a study in abstraction of goal-directed motions,” IEEE Trans. Syst., Man, Cybern. A, vol. 28, pp. 811–822, Nov. 1998.
    [18]J. Xiu, G. Chen, and M. Xie, “Vision-guided automatic parking for smart car,” in Proc. IEEE Intelligent Vehicles Symp., 2000, pp. 725–730.
    [19]T.C. Lee, C.Y. Tsai, and K.T. Song, “Fast parking control of mobile robots: a motion planning approach with experimental validation,” IEEE Trans. Contr. Syst. Technol., vol. 12, pp. 661-676, September 2004
    [20]K.Y. Lian, C. S. Chin, and T. S. Chiang, “Parallel parking a car-like robot using fuzzy gain scheduling,” in Proc. 1999 IEEE Int. Conf. Control Applications, vol. 2, 1999, pp. 1686–1691.
    [21]K. Jiang and L. D. Seneviratne, “A sensor guided autonomous parking system for nonholonomic mobile robots,” in Proc. IEEE Int. Conf. Robotics Automation, vol. 1, 1999, pp. 311–316.
    [22]K. Jiang, “A sensor guided parallel parking system for nonholonomic vehicles,” in Proc. IEEE Conf. Intelligent Transportation Systems, 2000, pp. 270–275.
    [23]W. L. Xu and S. K. Tso, “Sensor-based fuzzy reactive navigation of a mobile robot through local target switching,” IEEE Trans. Syst., Man, Cybern. C, vol.29, pp. 451-459, Aug. 1999
    [24]D. Bank, “A novel ultrasonic sensing system for autonomous mobile system,” IEEE Sensors journal. vol. 2, pp. 597-605, Dec. 2002
    [25]R. Kazys and L. Mazeika, ”Determination of spatial position of multiple targets by ultrasonic binaural method,” Ultrasonics Volume: 40, Issue: 1-8, May, 2002, pp. 397-402
    [26]R. Kuc, Biomimetic sonar recognizes objects using binaural information, J. Acoust. Soc. Amer. 102 (2, Pt.1) (1997) 689
    [27]L. A. Zadeh, “Fussy Sets,” Informat. Contr., Vol. 8, pp. 338-353, 1965.
    [28]L. A. Zadeh, “Fuzzy Algorithms,” Inform. Control, Vol. 12, pp. 94-102, 1968.
    [29]D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg, “Neural network architecture for trajectory generation and control of automated car parking,” IEEE Trans. Contr. Syst. Technol., vol. 4, pp. 50–56, Jan. 1996.
    [30]S. Lee, M. Kim, Y. Youm, and W. Chung, “Control of a car-like mobile robot for parking problem,” in Proc. IEEE Int. Conf. Robotics Automation, 1999, pp. 1–6.
    [31]T.-H. S. Li and S.-J. Chang, “Autonomous Fuzzy Parking Control of a Car-Like Mobile Robot,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 33, pp. 451–465, 2003.
    [32]T.-H. S. Li, S.-J. Chang, and Y.X. Chen, “Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot”, IEEE Trans on Industrial Electronics, vol. 50, NO.5, pp. 867-880, 2003.
    [33]C. S. Ting, T. H. S. Li, and F. C. Kung, “An approach to systematic design of the fuzzy control system,” Fuzzy Sets Syst., vol. 77, pp. 151–166, 1996.
    [34]T. H. S. Li and M. Y. Shieh, “Switching-type fuzzy sliding mode control of a cart-pole system,” Mechatronics, vol. 10, pp. 91–109, 2000.
    [35]O. Kaynak, K. Erbatur, and M. Ertugrul, “The fusion of computationally intelligent methodologies and sliding-mode control—a survey,” IEEE Trans. Ind. Electron., vol. 48, pp. 4–17, Feb. 2001.
    [36]S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control,” IEEE Trans. Robot. Automat., vol. 12, pp. 651–669, Oct. 1996.
    [37]J. S. Cho, H. W. Kim, and I. S. Kweon, “Image-based visual servoing using position and angle of image features,” Electron. Lett., vol. 37, pp. 208–214, 2001.
    [38]http://www.altera.com
    [39]User’s Manual, L293D Quadruple Half-H Derivers, June, 2002.
    [40]陳意翔,具智慧型停車功能車型機器人之設計與研製,國立成功大學電機系碩士論文,2002。
    [41]張其正,以Nios嵌入式系統設計實現雙感測器車型機器人之全自主式停車控制器,國立成功大學電機系碩士論文,2005。

    下載圖示 校內:2012-07-18公開
    校外:2016-07-18公開
    QR CODE