| 研究生: |
陳柏鈞 Chen, Po-Chun |
|---|---|
| 論文名稱: |
具高靈敏度和低軸向干擾的三軸壓電式MEMS中高頻加速規之開發: 鋯鈦酸鉛厚膜製備、特性分析、元件設計及優化 Development of a High-Sensitivity and Low-Axis-Crosstalk Tri-Axial Piezoelectric MEMS Accelerometer for Mid-to-High Frequency Applications: Fabrication, Characterization, Design, and Optimization of PZT Thick Films |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 溶膠凝膠法 、鋯鈦酸鉛 、MEMS三軸壓電式加速規 、ANSYS模擬 、壓電 、元件設計優化 |
| 外文關鍵詞: | Sol-gel, PZT, MEMS tri-axis piezoelectric accelerometer, ANSYS simulation, piezoelectricity, device design optimization |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當今隨著「工業4.0」概念的提出,智慧工廠(Intelligent Plant)、智慧機械(Intelligent Machine)與全球物聯網(Internet of Things, IoT)系統也迅速發展,加速規也扮演著其中重要的一環。MEMS壓電式三軸加速規具有小、輕、應用範圍非常廣等優點,其中壓電材料中的PZT具有高壓電係數、高介電常數、低損耗等優點,因此常被用於製作壓電式元件。
於本論文中,我們利用溶膠凝膠法,並將壓電厚膜應用於微機電系統(Micro Electro Mechanical Systems, MEMS)加速規。加速規的好壞取決於靈敏度大小,本研究將探討材料影響元件靈敏度的各種參數,並針對結構做設計、模擬和優化,再到最後的MEMS製程,並在其中帶入一些數學模型,同時兼具材料、設計、模擬、製程、優化、驗證等流程。
本研究發現,材料影響靈敏度的重點為材料的(d∙E)/ε值,在Pb過量20%和Nb 摻雜1%時有著最好的乘積,以此材料參數代入ANSYS做模擬和設計。經過一些數學模型的推導和參考,最後設計出一個在期望頻寬內高靈敏度和低軸相干擾的MEMS三軸壓電式加速規,且以新的指叉形當作電極圖案。加速規模擬出來之三軸共振頻率分別為(X, Y, Z) = (12.6, 31.6, 11.8)kHz,靈敏度為(X, Y, Z) = (6.11, 5.44, 8.85)mV/g,且有著低於15%的軸相干擾。
In this research, PZT piezoelectric thick films were fabricated using the sol-gel method and applied to MEMS accelerometers. Our findings indicate that the key material parameter affecting sensitivity is (d∙E)/ε, where the optimal value was achieved with 20% Pb excess and 1% Nb doping. These material parameters were used in ANSYS simulations for device modeling and design. Based on theoretical derivations and simulations, we designed a triaxial piezoelectric MEMS accelerometer with high sensitivity and low cross-axis interference within the target frequency bandwidth, employing a novel interdigitated electrode (IDE) pattern.The simulated resonant frequencies of the three axes were (X, Y, Z) = (12.6, 31.6, 11.8) kHz, and the corresponding sensitivities were (6.11, 5.44, 8.85) mV/g. The cross-axis interference was less than 15%, demonstrating the effectiveness of the proposed design.
[1] H. Kopetz and W. Steiner, Real-time systems: design principles for distributed embedded applications. Springer Nature, 2022.
[2] P. Jegatheesan and N. Giridharan, "Enhanced electrical properties of PZT thick films prepared by sol–gel technique through step-by-step crystallization process," Journal of Materials Science: Materials in Electronics, vol. 23, pp. 1103-1107, 2012.
[3] H. Gokdemir, H. Ozbasaran, M. Dogan, E. Unluoglu, and U. Albayrak, "Effects of torsional irregularity to structures during earthquakes," Engineering failure analysis, vol. 35, pp. 713-717, 2013.
[4] J. Curie and P. Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées," Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, 1880.
[5] 吳朗, 電子陶瓷: 壓電陶瓷. 全欣, 1994.
[6] S. M. Kargar and G. Hao, "An atlas of piezoelectric energy harvesters in oceanic applications," Sensors, vol. 22, no. 5, p. 1949, 2022.
[7] S. Priya et al., "A review on piezoelectric energy harvesting: materials, methods, and circuits," Energy harvesting and Systems, vol. 4, no. 1, pp. 3-39, 2019.
[8] V. T. Rathod, "A review of acoustic impedance matching techniques for piezoelectric sensors and transducers," Sensors, vol. 20, no. 14, p. 4051, 2020.
[9] A. M. Badr, H. A. Elshaikh, and I. M. Ashraf, "Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals," Journal of Modern Physics, vol. 2, no. 1, pp. 12-25, 2011.
[10] F. Seitz, D. Turnbull, and H. M. Otte, "Solid State Physics, Vol. 19," ed: American Institute of Physics, 1968.
[11] W. Zhang and R.-G. Xiong, "Ferroelectric metal–organic frameworks," Chemical reviews, vol. 112, no. 2, pp. 1163-1195, 2012.
[12] P. K. Panda and B. Sahoo, "PZT to lead free piezo ceramics: a review," Ferroelectrics, vol. 474, no. 1, pp. 128-143, 2015.
[13] S. Pramanik, B. Pingguan-Murphy, and N. A. A. Osman, "Developments of immobilized surface modified piezoelectric crystal biosensors for advanced applications," International journal of electrochemical science, vol. 8, no. 6, pp. 8863-8892, 2013.
[14] N. Sezer and M. Koç, "A comprehensive review on the state-of-the-art of piezoelectric energy harvesting," Nano energy, vol. 80, p. 105567, 2021.
[15] H. Kozuka and M. Kajimura, "Single‐Step Dip Coating of Crack‐Free BaTiO3 Films> 1 μm Thick: Effect of Poly (vinylpyrrolidone) on Critical Thickness," Journal of the American Ceramic Society, vol. 83, no. 5, pp. 1056-1062, 2000.
[16] Z. Du and J. Ma, "Effect of Polyvinylpyrrolidone Molecular Weight on the Critical Thickness, Crystallization, Densification and Properties of PLZT Films," MRS Online Proceedings Library (OPL), vol. 928, pp. 0928-GG14-19, 2006.
[17] D. Seregin et al., "Formation and properties of porous films of lead zirconate titanate," Physics of the Solid State, vol. 57, pp. 499-502, 2015.
[18] G. Shilpa, K. Sreelakshmi, and M. Ananthaprasad, "PZT thin film deposition techniques, properties and its application in ultrasonic MEMS sensors: A review," in IOP Conference Series: Materials Science and Engineering, 2016, vol. 149, no. 1: IOP Publishing, p. 012190.
[19] A. Shakeri, H. Abdizadeh, and M. R. Golobostanfard, "Synthesis and characterization of thick PZT films via sol–gel dip coating method," Applied surface science, vol. 314, pp. 711-719, 2014.
[20] D. Barrow, T. Petroff, and M. Sayer, "Thick ceramic coatings using a sol gel based ceramic-ceramic 0–3 composite," Surface and Coatings Technology, vol. 76, pp. 113-118, 1995.
[21] I. Mahmud, S.-C. Ur, and M.-S. Yoon, "Effect of high-energy milling process on microstructure and piezoelectric/dielectric properties of 0.99 Pb (Zr 0.53 Ti 0.47) O 3-0.01 BiYO 3 ceramic for piezoelectric energy harvesting devices," Electronic Materials Letters, vol. 10, pp. 223-228, 2014.
[22] W.-C. Shih, Z.-Z. Yen, and Y.-S. Liang, "Preparation of highly C-axis-oriented PZT films on Si substrate with MgO buffer layer by the sol–gel method," Journal of Physics and Chemistry of Solids, vol. 69, no. 2-3, pp. 593-596, 2008.
[23] D. Wang, C. Chen, J. Ma, and T. Liu, "Lead-based titanate ferroelectric thin films fabricated by a sol–gel technique," Applied Surface Science, vol. 255, no. 5, pp. 1637-1645, 2008.
[24] V. Narasimhan, H. Li, and M. Jianmin, "Micromachined high-g accelerometers: A review," Journal of Micromechanics and Microengineering, vol. 25, no. 3, p. 033001, 2015.
[25] A. Albarbar, S. Mekid, A. Starr, and R. Pietruszkiewicz, "Suitability of MEMS accelerometers for condition monitoring: An experimental study," Sensors, vol. 8, no. 2, pp. 784-799, 2008.
[26] W. Zhou, J. He, H. Yu, X. He, and P. Peng, "Analytical study of temperature coefficients of bulk MEMS capacitive accelerometers operating in closed-loop mode," Sensors and Actuators A: Physical, vol. 290, pp. 239-247, 2019.
[27] M. Keshavarzi and J. Yavand Hasani, "Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining," Microsystem Technologies, vol. 25, pp. 1369-1377, 2019.
[28] J.-H. Huang, C.-M. Cheng, S.-Y. Chu, and C.-C. Tsai, "The Design and Fabrication of Shear-Mode Piezoelectric Accelerometers with High Bandwidth Using High Piezoelectric g-Coefficient NKN-Based Ceramics," Materials, vol. 18, no. 8, p. 1813, 2025.
[29] R.-h. Han, J.-y. Wang, M.-h. Xu, and H. Guo, "Design of a tri-axial micro piezoelectric accelerometer," in 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 2016: IEEE, pp. 66-70.
[30] J. H. Kim, L. Wang, S. M. Zurn, L. Li, Y. S. Yoon, and D. L. Polla, "Fabrication process of PZT piezoelectric cantilever unimorphs using surface micromachining," Integrated Ferroelectrics, vol. 15, no. 1-4, pp. 325-332, 1997.
[31] M. W. Ashraf, S. Tayyaba, and N. Afzulpurkar, "Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications," International journal of molecular sciences, vol. 12, no. 6, pp. 3648-3704, 2011.
[32] K. Kunz, P. Enoksson, and G. Stemme, "Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors," Sensors and Actuators A: Physical, vol. 92, no. 1-3, pp. 156-160, 2001.
[33] Q.-M. Wang, Z. Yang, F. Li, and P. Smolinski, "Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling," Sensors and Actuators A: Physical, vol. 113, no. 1, pp. 1-11, 2004.
[34] Q. Zou, W. Tan, E. S. Kim, and G. E. Loeb, "Single-and triaxis piezoelectric-bimorph accelerometers," Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 45-57, 2008.
[35] C. C. Hindrichsen, N. S. Almind, S. H. Brodersen, R. Lou-Møller, K. Hansen, and E. V. Thomsen, "Triaxial MEMS accelerometer with screen printed PZT thick film," Journal of electroceramics, vol. 25, pp. 108-115, 2010.
[36] L.-P. Wang et al., "Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers," Journal of microelectromechanical systems, vol. 12, no. 4, pp. 433-439, 2003.
[37] H. G. Yu, L. Zou, K. Deng, R. Wolf, S. Tadigadapa, and S. Trolier-McKinstry, "Lead zirconate titanate MEMS accelerometer using interdigitated electrodes," Sensors and Actuators A: Physical, vol. 107, no. 1, pp. 26-35, 2003.
[38] C. C. Hindrichsen, J. Larsen, E. Thomsen, K. Hansen, and R. Lou-Møller, "Circular piezoelectric accelerometer for high band width application," in SENSORS, 2009 IEEE, 2009: IEEE, pp. 475-478.
[39] G. Yugandhar, G. V. Rao, and K. S. Rao, "Modeling and simulation of piezoelectric MEMS sensor," Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1595-1602, 2015.
[40] B. Yaghootkar, S. Azimi, and B. Bahreyni, "Wideband piezoelectric mems vibration sensor," in 2016 IEEE SENSORS, 2016: IEEE, pp. 1-3.
[41] C.-Y. Li et al., "Design and development of a low-power wireless MEMS lead-free piezoelectric accelerometer system," IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-11, 2023.
[42] X. Gong, W.-J. Wu, and W.-H. Liao, "A low-noise three-axis piezoelectric MEMS accelerometer for condition monitoring," in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020, 2020, vol. 11379: SPIE, pp. 110-117.
[43] P.-C. Yeh, H. Duan, and T.-K. Chung, "A novel three-axial magnetic-piezoelectric MEMS AC magnetic field sensor," Micromachines, vol. 10, no. 10, p. 710, 2019.
[44] L. Lin, F. Pan, J. Xu, and H. Guo, "Design of a three-axis high-g piezoresistive accelerometer," in 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, 2010: IEEE, pp. 773-776.
[45] F. Khayat, D. Nasr, M. H. Said, M. Mansour, and F. Tounsi, "Design Enhancement of Folded Beams Attachment for MEMS-Based Triaxial Accelerometer," in 2024 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS), 2024: IEEE, pp. 1-6.
[46] Y. Liu, B. Hu, Y. Cai, W. Liu, A. Tovstopyat, and C. Sun, "A novel tri-axial piezoelectric MEMS accelerometer with folded beams," Sensors, vol. 21, no. 2, p. 453, 2021.
[47] M.-h. Xu, J.-y. Wang, R.-h. Han, H. Zhou, and H. Guo, "Analytical and finite element analysis of a new tri-axial piezoelectric accelerometer," in 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 2016: IEEE, pp. 71-75.
[48] C.-M. Sun, M.-H. Tsai, Y.-C. Liu, and W. Fang, "Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique," IEEE Transactions on Electron devices, vol. 57, no. 7, pp. 1670-1679, 2010.
[49] H. Qu, D. Fang, and H. Xie, "A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier," IEEE Sensors journal, vol. 8, no. 9, pp. 1511-1518, 2008.
[50] K. Kwon and S. Park, "A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer," Sensors and Actuators A: Physical, vol. 66, no. 1-3, pp. 250-255, 1998.
[51] X. Wang et al., "Orientation transition, dielectric, and ferroelectric behaviors of sol-gel derived PZT thin films deposited on Ti–Pt alloy layers: A Ti content-dependent study," Ceramics International, vol. 46, no. 8, pp. 10256-10261, 2020.
[52] L. Jin, F. Li, and S. Zhang, "Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures," Journal of the American Ceramic Society, vol. 97, no. 1, pp. 1-27, 2014.
[53] C.-L. Dai, F.-Y. Xiao, C.-Y. Lee, Y.-C. Cheng, P.-Z. Chang, and S.-H. Chang, "Thermal effects in PZT: diffusion of titanium and recrystallization of platinum," Materials Science and Engineering: A, vol. 384, no. 1-2, pp. 57-63, 2004.
[54] C. Yang, B. Hu, L. Lu, Z. Wang, W. Liu, and C. Sun, "A miniaturized piezoelectric MEMS accelerometer with polygon topological cantilever structure," Micromachines, vol. 13, no. 10, p. 1608, 2022.
[55] M.-h. Xu et al., "Design and fabrication of a D 33-mode piezoelectric micro-accelerometer," Microsystem Technologies, vol. 25, pp. 4465-4474, 2019.
[56] G. K. Verma and M. Z. Ansari, "Design and simulation of piezoresistive polymer accelerometer," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 561, no. 1: IOP Publishing, p. 012128.
[57] S. Shi et al., "High sensitivity MEMS accelerometer using PZT-based four L-shaped beam structure," IEEE Sensors Journal, vol. 22, no. 8, pp. 7627-7636, 2022.
[58] Y.-C. Lee, C.-C. Tsai, Y.-C. Liou, C.-S. Hong, and S.-Y. Chu, "Effects of Nb doping on crystalline orientation, microstructure and electrical properties of non-stoichiometric PZT thick films via hybrid sol-gel method," ECS Journal of Solid State Science and Technology, vol. 10, no. 6, p. 063010, 2021.
校內:2030-08-18公開