簡易檢索 / 詳目顯示

研究生: 陳柏鈞
Chen, Po-Chun
論文名稱: 具高靈敏度和低軸向干擾的三軸壓電式MEMS中高頻加速規之開發: 鋯鈦酸鉛厚膜製備、特性分析、元件設計及優化
Development of a High-Sensitivity and Low-Axis-Crosstalk Tri-Axial Piezoelectric MEMS Accelerometer for Mid-to-High Frequency Applications: Fabrication, Characterization, Design, and Optimization of PZT Thick Films
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 138
中文關鍵詞: 溶膠凝膠法鋯鈦酸鉛MEMS三軸壓電式加速規ANSYS模擬壓電元件設計優化
外文關鍵詞: Sol-gel, PZT, MEMS tri-axis piezoelectric accelerometer, ANSYS simulation, piezoelectricity, device design optimization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當今隨著「工業4.0」概念的提出,智慧工廠(Intelligent Plant)、智慧機械(Intelligent Machine)與全球物聯網(Internet of Things, IoT)系統也迅速發展,加速規也扮演著其中重要的一環。MEMS壓電式三軸加速規具有小、輕、應用範圍非常廣等優點,其中壓電材料中的PZT具有高壓電係數、高介電常數、低損耗等優點,因此常被用於製作壓電式元件。
    於本論文中,我們利用溶膠凝膠法,並將壓電厚膜應用於微機電系統(Micro Electro Mechanical Systems, MEMS)加速規。加速規的好壞取決於靈敏度大小,本研究將探討材料影響元件靈敏度的各種參數,並針對結構做設計、模擬和優化,再到最後的MEMS製程,並在其中帶入一些數學模型,同時兼具材料、設計、模擬、製程、優化、驗證等流程。
    本研究發現,材料影響靈敏度的重點為材料的(d∙E)/ε值,在Pb過量20%和Nb 摻雜1%時有著最好的乘積,以此材料參數代入ANSYS做模擬和設計。經過一些數學模型的推導和參考,最後設計出一個在期望頻寬內高靈敏度和低軸相干擾的MEMS三軸壓電式加速規,且以新的指叉形當作電極圖案。加速規模擬出來之三軸共振頻率分別為(X, Y, Z) = (12.6, 31.6, 11.8)kHz,靈敏度為(X, Y, Z) = (6.11, 5.44, 8.85)mV/g,且有著低於15%的軸相干擾。

    In this research, PZT piezoelectric thick films were fabricated using the sol-gel method and applied to MEMS accelerometers. Our findings indicate that the key material parameter affecting sensitivity is (d∙E)/ε, where the optimal value was achieved with 20% Pb excess and 1% Nb doping. These material parameters were used in ANSYS simulations for device modeling and design. Based on theoretical derivations and simulations, we designed a triaxial piezoelectric MEMS accelerometer with high sensitivity and low cross-axis interference within the target frequency bandwidth, employing a novel interdigitated electrode (IDE) pattern.The simulated resonant frequencies of the three axes were (X, Y, Z) = (12.6, 31.6, 11.8) kHz, and the corresponding sensitivities were (6.11, 5.44, 8.85) mV/g. The cross-axis interference was less than 15%, demonstrating the effectiveness of the proposed design.

    目錄 摘要 III Extended Abstract IV 誌謝 XI 圖目錄 1 表目錄 6 第一章 緒論 7 1.1前言 7 1.2研究動機 8 1.3論文架構 9 第二章 基礎理論和文獻回顧 10 2.1壓電理論 10 2.1.1壓電效應 10 2.1.2壓電耦合 11 2.1.3壓電方程式 13 2.1.4介電效應 14 2.1.5鐵電效應 16 2.2壓電材料 17 2.2.1材料晶格與晶系 17 2.2.2壓電材料種類 19 2.2.3鋯鈦酸鉛(lead zirconium, PZT) 21 2.3壓電薄膜 23 2.3.1薄膜製備方法 23 2.3.2溶膠凝膠法原理 25 2.3.3溶膠凝膠法鍍膜方式 26 2.4 MEMS壓電加速規 28 2.4.1 MEMS製程介紹 28 2.4.2加速規總類 30 2.4.3 MEMS壓電加速規文獻回顧 34 2.4.4 三軸MEMS壓電加速規文獻回顧 37 2.5場域應用 38 2.6有限元素分系法 38 2.7加速規公式推導 39 2.7.1 共振頻率推導 40 2.7.2 Z軸共振頻率推導 41 2.7.3 Z軸靈敏度推導 42 2.7.4 X,Y軸共振頻率推導 43 2.7.5 X,Y軸靈敏度推導 44 第三章 實驗方法與量測 45 3.1 ANSYS有限元素軟體分析 45 3.2實驗流程 47 3.3實驗藥品 49 3.4實驗方法 49 3.4.1基板製備 50 3.4.2 Ti/Pt下電極薄膜沉積 50 3.4.3溶液製備 51 3.4.4壓電膜塗佈與熱處理製程 52 3.4.5黃光微影製程 53 3.4.6蝕刻製程 53 3.5實驗儀器 54 3.5.1磁控濺鍍系統 54 3.5.2旋轉塗佈機 55 3.5.3加熱攪拌平台 56 3.5.4快速退火系統(RTA) 56 3.5.5自動化光阻塗佈及顯影系統(Track) 57 3.5.6光罩對準曝光系統(Mask aligner) 58 3.5.7電漿輔助式化學氣象沉積&感應耦合式蝕刻系統(PECVD&ICP) 58 3.5.8 鋁線打線機 59 3.5.9 複合薄膜多腔體濺鍍系統 60 3.6薄膜材料特性及電性量測設備 61 3.6.1表面輪廓測量儀(Profile meter) 61 3.6.2 3D雷射顯微鏡(3D Laser Microscopy) 61 3.6.3 X光繞射儀(XRD) 62 3.6.4場發射掃描式電子顯微鏡(FE-SEM)及能量分散光譜儀(EDS) 63 3.6.5原子力顯微鏡&壓電力顯微鏡(AFM&PFM) 64 3.6.6阻抗分析儀 65 3.6.7 奈米壓痕 66 3.6.8 振動感測器 67 3.7 元件設計 68 3.7.1參考文獻 68 3.7.2電極佈置 72 3.7.3懸臂樑厚度調整 73 3.7.4頻寬提升 74 3.7.5三軸設計和改良 75 3.7.6 Y軸靈敏度優化-質量塊優化 78 3.7.7 Y軸靈敏度優化-樑優化 79 3.7.8 最後結構優化-z軸優化 79 3.7.9指叉電極 80 3.8材料的研究目標 81 第四章 實驗結果與討論 83 4.1不同Pb過量對厚膜之特性影響 83 4.1.1不同Pb過量之XRD分析 83 4.1.2 不同Pb過量之PZT厚膜 SEM分析 84 4.1.3 不同Pb過量之PZT厚膜介電分析 85 4.1.4不同Pb過量之PZT厚膜壓電分析 86 4.1.5不同Pb過量之PNZT厚膜楊氏係數分析 87 4.1.6 影響靈敏度的材料參數萃取 88 4.2 不同Nb濃度厚膜材料特性分析 89 4.2.1 不同Nb濃度之PNZT厚膜XRD分析 89 4.2.2 不同Nb濃度之SEM分析 92 4.2.3 不同Nb濃度之介電分析 94 4.2.4 不同Nb濃度之壓電分析 95 4.2.5 不同Nb濃度之楊氏係數分析 96 4.2.6 影響靈敏度的材料參數萃取 97 4.3 模擬之研究結果與分析 98 4.3.1 參考文獻模擬驗證 98 4.3.2文獻結構共振頻率推導 101 4.3.3三軸加速規共振頻率和靈敏度 104 4.3.4 軸相干擾 107 4.4 MEMS製程 108 4.4.1 MEMS製程尺寸設計 108 4.4.2 MEMS製程困境 110 4.4.3 MEMS壓電式三軸加速規製程結果 112 第五章 結論與未來展望 113 5.1 結論 113 5.1.1 PZT厚膜 113 5.1.2 加速規設計 113 5.1.3 MEMS製程 113 5.2 未來展望 114 第六章 參考文獻 115

    [1] H. Kopetz and W. Steiner, Real-time systems: design principles for distributed embedded applications. Springer Nature, 2022.
    [2] P. Jegatheesan and N. Giridharan, "Enhanced electrical properties of PZT thick films prepared by sol–gel technique through step-by-step crystallization process," Journal of Materials Science: Materials in Electronics, vol. 23, pp. 1103-1107, 2012.
    [3] H. Gokdemir, H. Ozbasaran, M. Dogan, E. Unluoglu, and U. Albayrak, "Effects of torsional irregularity to structures during earthquakes," Engineering failure analysis, vol. 35, pp. 713-717, 2013.
    [4] J. Curie and P. Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées," Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, 1880.
    [5] 吳朗, 電子陶瓷: 壓電陶瓷. 全欣, 1994.
    [6] S. M. Kargar and G. Hao, "An atlas of piezoelectric energy harvesters in oceanic applications," Sensors, vol. 22, no. 5, p. 1949, 2022.
    [7] S. Priya et al., "A review on piezoelectric energy harvesting: materials, methods, and circuits," Energy harvesting and Systems, vol. 4, no. 1, pp. 3-39, 2019.
    [8] V. T. Rathod, "A review of acoustic impedance matching techniques for piezoelectric sensors and transducers," Sensors, vol. 20, no. 14, p. 4051, 2020.
    [9] A. M. Badr, H. A. Elshaikh, and I. M. Ashraf, "Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals," Journal of Modern Physics, vol. 2, no. 1, pp. 12-25, 2011.
    [10] F. Seitz, D. Turnbull, and H. M. Otte, "Solid State Physics, Vol. 19," ed: American Institute of Physics, 1968.
    [11] W. Zhang and R.-G. Xiong, "Ferroelectric metal–organic frameworks," Chemical reviews, vol. 112, no. 2, pp. 1163-1195, 2012.
    [12] P. K. Panda and B. Sahoo, "PZT to lead free piezo ceramics: a review," Ferroelectrics, vol. 474, no. 1, pp. 128-143, 2015.
    [13] S. Pramanik, B. Pingguan-Murphy, and N. A. A. Osman, "Developments of immobilized surface modified piezoelectric crystal biosensors for advanced applications," International journal of electrochemical science, vol. 8, no. 6, pp. 8863-8892, 2013.
    [14] N. Sezer and M. Koç, "A comprehensive review on the state-of-the-art of piezoelectric energy harvesting," Nano energy, vol. 80, p. 105567, 2021.
    [15] H. Kozuka and M. Kajimura, "Single‐Step Dip Coating of Crack‐Free BaTiO3 Films> 1 μm Thick: Effect of Poly (vinylpyrrolidone) on Critical Thickness," Journal of the American Ceramic Society, vol. 83, no. 5, pp. 1056-1062, 2000.
    [16] Z. Du and J. Ma, "Effect of Polyvinylpyrrolidone Molecular Weight on the Critical Thickness, Crystallization, Densification and Properties of PLZT Films," MRS Online Proceedings Library (OPL), vol. 928, pp. 0928-GG14-19, 2006.
    [17] D. Seregin et al., "Formation and properties of porous films of lead zirconate titanate," Physics of the Solid State, vol. 57, pp. 499-502, 2015.
    [18] G. Shilpa, K. Sreelakshmi, and M. Ananthaprasad, "PZT thin film deposition techniques, properties and its application in ultrasonic MEMS sensors: A review," in IOP Conference Series: Materials Science and Engineering, 2016, vol. 149, no. 1: IOP Publishing, p. 012190.
    [19] A. Shakeri, H. Abdizadeh, and M. R. Golobostanfard, "Synthesis and characterization of thick PZT films via sol–gel dip coating method," Applied surface science, vol. 314, pp. 711-719, 2014.
    [20] D. Barrow, T. Petroff, and M. Sayer, "Thick ceramic coatings using a sol gel based ceramic-ceramic 0–3 composite," Surface and Coatings Technology, vol. 76, pp. 113-118, 1995.
    [21] I. Mahmud, S.-C. Ur, and M.-S. Yoon, "Effect of high-energy milling process on microstructure and piezoelectric/dielectric properties of 0.99 Pb (Zr 0.53 Ti 0.47) O 3-0.01 BiYO 3 ceramic for piezoelectric energy harvesting devices," Electronic Materials Letters, vol. 10, pp. 223-228, 2014.
    [22] W.-C. Shih, Z.-Z. Yen, and Y.-S. Liang, "Preparation of highly C-axis-oriented PZT films on Si substrate with MgO buffer layer by the sol–gel method," Journal of Physics and Chemistry of Solids, vol. 69, no. 2-3, pp. 593-596, 2008.
    [23] D. Wang, C. Chen, J. Ma, and T. Liu, "Lead-based titanate ferroelectric thin films fabricated by a sol–gel technique," Applied Surface Science, vol. 255, no. 5, pp. 1637-1645, 2008.
    [24] V. Narasimhan, H. Li, and M. Jianmin, "Micromachined high-g accelerometers: A review," Journal of Micromechanics and Microengineering, vol. 25, no. 3, p. 033001, 2015.
    [25] A. Albarbar, S. Mekid, A. Starr, and R. Pietruszkiewicz, "Suitability of MEMS accelerometers for condition monitoring: An experimental study," Sensors, vol. 8, no. 2, pp. 784-799, 2008.
    [26] W. Zhou, J. He, H. Yu, X. He, and P. Peng, "Analytical study of temperature coefficients of bulk MEMS capacitive accelerometers operating in closed-loop mode," Sensors and Actuators A: Physical, vol. 290, pp. 239-247, 2019.
    [27] M. Keshavarzi and J. Yavand Hasani, "Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining," Microsystem Technologies, vol. 25, pp. 1369-1377, 2019.
    [28] J.-H. Huang, C.-M. Cheng, S.-Y. Chu, and C.-C. Tsai, "The Design and Fabrication of Shear-Mode Piezoelectric Accelerometers with High Bandwidth Using High Piezoelectric g-Coefficient NKN-Based Ceramics," Materials, vol. 18, no. 8, p. 1813, 2025.
    [29] R.-h. Han, J.-y. Wang, M.-h. Xu, and H. Guo, "Design of a tri-axial micro piezoelectric accelerometer," in 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 2016: IEEE, pp. 66-70.
    [30] J. H. Kim, L. Wang, S. M. Zurn, L. Li, Y. S. Yoon, and D. L. Polla, "Fabrication process of PZT piezoelectric cantilever unimorphs using surface micromachining," Integrated Ferroelectrics, vol. 15, no. 1-4, pp. 325-332, 1997.
    [31] M. W. Ashraf, S. Tayyaba, and N. Afzulpurkar, "Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications," International journal of molecular sciences, vol. 12, no. 6, pp. 3648-3704, 2011.
    [32] K. Kunz, P. Enoksson, and G. Stemme, "Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors," Sensors and Actuators A: Physical, vol. 92, no. 1-3, pp. 156-160, 2001.
    [33] Q.-M. Wang, Z. Yang, F. Li, and P. Smolinski, "Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling," Sensors and Actuators A: Physical, vol. 113, no. 1, pp. 1-11, 2004.
    [34] Q. Zou, W. Tan, E. S. Kim, and G. E. Loeb, "Single-and triaxis piezoelectric-bimorph accelerometers," Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 45-57, 2008.
    [35] C. C. Hindrichsen, N. S. Almind, S. H. Brodersen, R. Lou-Møller, K. Hansen, and E. V. Thomsen, "Triaxial MEMS accelerometer with screen printed PZT thick film," Journal of electroceramics, vol. 25, pp. 108-115, 2010.
    [36] L.-P. Wang et al., "Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers," Journal of microelectromechanical systems, vol. 12, no. 4, pp. 433-439, 2003.
    [37] H. G. Yu, L. Zou, K. Deng, R. Wolf, S. Tadigadapa, and S. Trolier-McKinstry, "Lead zirconate titanate MEMS accelerometer using interdigitated electrodes," Sensors and Actuators A: Physical, vol. 107, no. 1, pp. 26-35, 2003.
    [38] C. C. Hindrichsen, J. Larsen, E. Thomsen, K. Hansen, and R. Lou-Møller, "Circular piezoelectric accelerometer for high band width application," in SENSORS, 2009 IEEE, 2009: IEEE, pp. 475-478.
    [39] G. Yugandhar, G. V. Rao, and K. S. Rao, "Modeling and simulation of piezoelectric MEMS sensor," Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1595-1602, 2015.
    [40] B. Yaghootkar, S. Azimi, and B. Bahreyni, "Wideband piezoelectric mems vibration sensor," in 2016 IEEE SENSORS, 2016: IEEE, pp. 1-3.
    [41] C.-Y. Li et al., "Design and development of a low-power wireless MEMS lead-free piezoelectric accelerometer system," IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-11, 2023.
    [42] X. Gong, W.-J. Wu, and W.-H. Liao, "A low-noise three-axis piezoelectric MEMS accelerometer for condition monitoring," in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020, 2020, vol. 11379: SPIE, pp. 110-117.
    [43] P.-C. Yeh, H. Duan, and T.-K. Chung, "A novel three-axial magnetic-piezoelectric MEMS AC magnetic field sensor," Micromachines, vol. 10, no. 10, p. 710, 2019.
    [44] L. Lin, F. Pan, J. Xu, and H. Guo, "Design of a three-axis high-g piezoresistive accelerometer," in 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, 2010: IEEE, pp. 773-776.
    [45] F. Khayat, D. Nasr, M. H. Said, M. Mansour, and F. Tounsi, "Design Enhancement of Folded Beams Attachment for MEMS-Based Triaxial Accelerometer," in 2024 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS), 2024: IEEE, pp. 1-6.
    [46] Y. Liu, B. Hu, Y. Cai, W. Liu, A. Tovstopyat, and C. Sun, "A novel tri-axial piezoelectric MEMS accelerometer with folded beams," Sensors, vol. 21, no. 2, p. 453, 2021.
    [47] M.-h. Xu, J.-y. Wang, R.-h. Han, H. Zhou, and H. Guo, "Analytical and finite element analysis of a new tri-axial piezoelectric accelerometer," in 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 2016: IEEE, pp. 71-75.
    [48] C.-M. Sun, M.-H. Tsai, Y.-C. Liu, and W. Fang, "Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique," IEEE Transactions on Electron devices, vol. 57, no. 7, pp. 1670-1679, 2010.
    [49] H. Qu, D. Fang, and H. Xie, "A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier," IEEE Sensors journal, vol. 8, no. 9, pp. 1511-1518, 2008.
    [50] K. Kwon and S. Park, "A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer," Sensors and Actuators A: Physical, vol. 66, no. 1-3, pp. 250-255, 1998.
    [51] X. Wang et al., "Orientation transition, dielectric, and ferroelectric behaviors of sol-gel derived PZT thin films deposited on Ti–Pt alloy layers: A Ti content-dependent study," Ceramics International, vol. 46, no. 8, pp. 10256-10261, 2020.
    [52] L. Jin, F. Li, and S. Zhang, "Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures," Journal of the American Ceramic Society, vol. 97, no. 1, pp. 1-27, 2014.
    [53] C.-L. Dai, F.-Y. Xiao, C.-Y. Lee, Y.-C. Cheng, P.-Z. Chang, and S.-H. Chang, "Thermal effects in PZT: diffusion of titanium and recrystallization of platinum," Materials Science and Engineering: A, vol. 384, no. 1-2, pp. 57-63, 2004.
    [54] C. Yang, B. Hu, L. Lu, Z. Wang, W. Liu, and C. Sun, "A miniaturized piezoelectric MEMS accelerometer with polygon topological cantilever structure," Micromachines, vol. 13, no. 10, p. 1608, 2022.
    [55] M.-h. Xu et al., "Design and fabrication of a D 33-mode piezoelectric micro-accelerometer," Microsystem Technologies, vol. 25, pp. 4465-4474, 2019.
    [56] G. K. Verma and M. Z. Ansari, "Design and simulation of piezoresistive polymer accelerometer," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 561, no. 1: IOP Publishing, p. 012128.
    [57] S. Shi et al., "High sensitivity MEMS accelerometer using PZT-based four L-shaped beam structure," IEEE Sensors Journal, vol. 22, no. 8, pp. 7627-7636, 2022.
    [58] Y.-C. Lee, C.-C. Tsai, Y.-C. Liou, C.-S. Hong, and S.-Y. Chu, "Effects of Nb doping on crystalline orientation, microstructure and electrical properties of non-stoichiometric PZT thick films via hybrid sol-gel method," ECS Journal of Solid State Science and Technology, vol. 10, no. 6, p. 063010, 2021.

    無法下載圖示 校內:2030-08-18公開
    校外:2030-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE