簡易檢索 / 詳目顯示

研究生: 羅明修
Darminto, Mohammad Rohmaneo
論文名稱: 以決策樹於崩塌釋放潛勢圖像化
Mapping Landslide Release Susceptibility Using Decision Tree
指導教授: 朱宏杰
Chu, Hone-Jay
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 65
外文關鍵詞: Decision tree, Landslide Susceptibility Map, Zhoukou River Basin
相關次數: 點閱:124下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Landslides pose threats not only to infrastructure around the world but also to local communities. One particularly susceptible area in Taiwan is in the Zhoukou River basin, Kaoping watershed. This study aimed to produce a Classification and Regression Tree (CART) model using R software that accurately predicts landslides in this area by validating the predictions against those observed recorded landslides in this region. The landslide data were recorded in the year of 2010, a year after typhoon Morakot stroked Taiwan in 2009, triggering huge number of landslides all over the cou[ntry. This study proposed the new concept to separate landslides area into release as its source and focuses on using the topographical factors derived from Digital Elevation Model (DEM) as the independent variable in predicting landslides occurrence, including Slope, Aspect, Curvature, Topographic Wetness Index, Average Slope and Distance from the river, and an additional Geological map of the study area.
    An observed landslide release occurrence layer posed as the dependent variable classifier in the model. First, data sampling strategies applied show an optimal model to be created with the highest Area Under Curve (AUC) value of 0.73. Next, this model identified the most influential factors causing landslides by using information gain’ statistics in R software. Aspect, were determined as being most influential factor, where Distance from river, and Slope as second and third most influential.
    The concept of release area separation showed a better AUC value model compared to the model using conventional full landslide inventory. The decision tree model also showed a reliable result when compared to logistic regression and random forest using the same data sampling, with the AUC value of 0.73, 0.65, and 0.81 respectively. The results have proven that decision tree model is suitable for producing landslide susceptibility map.

    Abstract ………………………………………………..……………………………………….... i Acknowledgement ……………………………………………………………….……………... ii Table of Content ……………………………………...………………………………...…….. iii List of Figures …… …………………………………………………………...………..……..... v List of Tables …………………………………………………….……………………………..…...… vii CHAPTER ONE INTRODUCTION …………………………...………………………….…. 1 1.1 Introduction ……………………………………………………………………………….... 1 1.2 Previous Studies …………………………………………………………………………….. 2 1.3 Research Goal ………………………………………………………………………………. 4 1.4 Study Area …………………………………………………………………………………. 4 CHAPTER TWO METHODS AND DATASET……………..………………………………. 6 2.1 Release and Deposition Separation ………………………………………………………… 6 2.1.1Inventory Subsetting ……………………….……………………………………………. 6 2.2 Decision Tree ……………………………………………………………………………….. 8 2.3 Topographical Factors ……………………………………………………………………… 9 2.3.1 Elevation, Slope Angle, and Aspect …………………………………………………... 10 2.3.2 Slope Curvature ……………………………………………………………………….. 13 2.3.3 Topographic Wetness Index …………………………………………………………... 14 2.3.4 Distance from the River and Average Slope from the River. ………………………… 15 2.3.5 Geological Map ……………………………………………………………………….. 17 2.4 Workflow …………………………………………………………………………………. 20 2.4.1 Data Sampling ……………………………………………………………………….... 21 2.4.1.1 Training Data ……………………………………………………………….. 21 2.4.1.2 Testing Data ………………………………………………………………… 23 2.4.2 Decision Tree Process in R Software …………………………………………………. 24 2.4.3 Area Under Curve (AUC) ……………………………………………………………... 26 CHAPTER THREE RESULTS AND DISCUSSIONS …………………………………….. 29 3.1 Data Sampling Strategies ………………………………………………………………..… 29 3.2 Parameter Sensitivity Test …………………………………………………………………. 30 3.3 Most Influential Factors and Optimum Result …………………………………………….. 32 3.3.1 Landslide Release Susceptibility Map ………………………………………………… 34 3.4 Comparison Using Different Resolution in Prediction Accuracy ………….…………….… 35 3.5 Comparison Between Landslides Release and Landslide Inventory Application ……….… 36 3.6 Comparison of Decision Tree and Logistic Regression …………………………………… 39 3.7 Comparison of Decision Tree and Random Forest ……………………………………........ 40 CHAPTER FOUR CONCLUDING REMARKS ………..………………...……………….. 44 4.1 Conclusion …………………………………………………………………………….…… 44 4.2 Future Studies ……………………………………………………………………………… 45 REFERENCES …………………………………..…………………………………………… 47 APPENDIX A ………………………………….….……………………………………….….. 50 APPENDIX B ……………………………………...……………………………………..…… 55

    Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65, 15–31. doi:10.1016/j.geomorph.2004.06.010
    Baeza, C., Lantada, N., Moya, J., 2010. Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain). Environ. Earth Sci. 61, 507–523. doi:10.1007/s12665-009-0361-5
    Breiman, L., Jerome Friedman, R. Olshen and C. Stone, 1984. Classification and Regression Trees. Belmont, California.
    Burrough, P.A, M., R.., 1998. Principles of Geographical Information Systems. Oxford University Press, New York.
    Caiyan, W., Jianping, Q., Meng, W., 2006. Landslides and slope aspect in the Three Gorges Reservoir area based on GIS and information value model. Wuhan Univ. J. Nat. Sci. 11, 773–779. doi:10.1007/BF02830163
    Hanley JA et al, 1983. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. 839–843.
    J. Han, M.K., J. Pei, 2011. Chapter 8: Classification, Basic Concepts. In Data Mining Concepts and Techniques. Elsevier, Amsterdam, pp. 327–348.
    Kantardzic, M., 2002. Data Mining: Concepts, Models, Methods and Algorithms. John Wiley & Sons, Inc., New York, NY, USA.
    Kjekstad, O., Highland, L., 2009. Economic and Social Impacts of Landslides, in: Sassa, K., Canuti, P. (Eds.), Landslides – Disaster Risk Reduction. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 573–587. doi:10.1007/978-3-540-69970-5_30
    Loh, W.-Y., 2011. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 14–23. doi:10.1002/widm.8
    McDaniel, E., 2015. LANDSLIDE OCCURRENCE DECISION TREE MODEL FOR WESTERN WASHINGTON FEATURING PRECIPITATION.
    Mergili, M., Chu, H.-J., 2015. Integrated statistical modelling of spatial landslide probability. Nat Hazards Earth Syst Sci Discuss 2015, 5677–5715. doi:10.5194/nhessd-3-5677-2015
    Mergili, M., Krenn, J., Chu, H.-J., 2015. r.randomwalk v1, a multi-functional conceptual tool for mass movement routing. Geosci Model Dev 8, 4027–4043. doi:10.5194/gmd-8-4027-2015
    Mutasem Sh. Alkhasawneh et al, 2013. Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network. Sci. World J. 2013, 12.
    Pal, M., Mather, P.M., 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 86, 554–565. doi:10.1016/S0034-4257(03)00132-9
    Piotr Migoń and Aleksandra Michniewicz, M.R., 2016. Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland. Z. Für Geomorphol. Vol 58 2014 Suppl.
    Poudyal, C.P., 2013. Landslide susceptibility analysis using decision tree method, Phidim, Eastern Nepal. Bull. Dep. Geol. Vol 15 2012.
    Pourghasemi, H.R., Pradhan, B., Gokceoglu, C., Deylami Moezzi, K., 2012. Landslide Susceptibility Mapping Using a Spatial Multi Criteria Evaluation Model at Haraz Watershed, Iran, in: Pradhan, B., Buchroithner, M. (Eds.), Terrigenous Mass Movements: Detection, Modelling, Early Warning and Mitigation Using Geoinformation Technology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 23–49. doi:10.1007/978-3-642-25495-6_2
    Quinlan, J.R., 1986. Induction of Decision Trees. Mach Learn 1, 81–106. doi:10.1023/A:1022643204877
    R Development Core Team, 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
    Saito, H., Nakayama, D., Matsuyama, H., 2009. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology 109, 108–121. doi:10.1016/j.geomorph.2009.02.026
    Sørensen, R., Zinko, U., Seibert, J., 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci 10, 101–112. doi:10.5194/hess-10-101-2006
    Tariq, S.R., Shah, M.H., Shaheen, N., Khalique, A., Manzoor, S., Jaffar, M., 2006. Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: a case study from Peshawar, Pakistan. J. Environ. Manage. 79, 20–29. doi:10.1016/j.jenvman.2005.05.009
    Tien Bui, D., Tuan, T.A., Hoang, N.-D., Thanh, N.Q., Nguyen, D.B., Van Liem, N., Pradhan, B., 2017. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 14, 447–458. doi:10.1007/s10346-016-0711-9
    Tsangaratos, P., Ilia, I., 2016. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides 13, 305–320. doi:10.1007/s10346-015-0565-6
    Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., Vandekerckhove, L., 2006. Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium). Geomorphology 76, 392–410. doi:10.1016/j.geomorph.2005.12.003
    Yeon, Y.-K., Han, J.-G., Ryu, K.H., 2010. Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng. Geol. 116, 274–283. doi:10.1016/j.enggeo.2010.09.009
    Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 79, 251–266. doi:10.1016/j.enggeo.2005.02.002
    Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z.S., Al-Katheeri, M.M., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13, 839–856. doi:10.1007/s10346-015-0614-1
    Zhang, K., Wu, X., Niu, R., Yang, K., Zhao, L., 2017. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ. Earth Sci. 76, 405. doi:10.1007/s12665-017-6731-5
    Zweig, M.H., Campbell, G., 1993. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE