簡易檢索 / 詳目顯示

研究生: 劉政威
Liu, Zheng-Wei
論文名稱: 使用自動調整寫入技術以提升寫入穩定度之鄰近臨界電壓的靜態隨機存取記憶體
Enhanced Write-Stability using a Self-Bias-Write Technique for Near-threshold Voltage SRAMs
指導教授: 邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 70
中文關鍵詞: 靜態隨機存取記憶體低功率低功率寫入輔助技術額外面積
外文關鍵詞: SRAM, low voltage, low power, write assist technique, area overhead
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著科技蓬勃發展及環保意識抬頭,大部分產品和發展趨勢大部分都朝向低功率消耗的發展,同時也希望能夠達到輕薄短小的特性,目的就是為了延長小尺寸的產品之電池的使用壽命,而在整體系統中以靜態隨機存取記憶體的能量消耗為主宰,因此,為了降低靜態隨機存取記憶體的功率消耗而陸續衍生出許多低功率消耗之研究,其中以降低操作電壓為常用且有效的方式之一,然而降低操作電壓雖然可以大幅降低功率消耗,但是卻遭受嚴重的製程變異影響。尤其當電路操作在近臨界電壓或是次臨界電壓以下時,電晶體的電流將跟臨界電壓的變異成指數形式的關係,進而影響到靜態隨機存取記憶體操作功能的正確性以及功率消耗等等,造成靜態隨機存取記憶體中的讀取雜訊邊界及寫入雜訊邊界降低,最差的情況則會導致讀取或寫入發生錯誤,因此,針對上述情況已經發展出許多讀取或寫入輔助技術應用於低電壓操作的設計中,而在這篇論文中,將會針對寫入部分提出寫入輔助技術,目的是解決低電壓操作時寫入能力不足的情況,使其可操作於近臨界電壓,同時考量額外面積消耗,找出較佳的解達到低功率消耗且小尺寸的設計。而最後我們以40奈米製程下線並做佈局後模擬驗證。

    In recent years, for the promising growth of technology and eco-friendly sense, most of the products and development are working toward low-power consumption while maintaining small size. The purpose is to provide longer battery’s lifetime of product as the volume decrease. Static random access memory (SRAM) is one of major sources of power consumption in the SOC, as a result, many researches have investigated low-power consumption techniques. Among them, scaling supply voltage is a common and effective way. Although the power consumption can be greatly reduced, but it is affected significantly by process variations. Especially, when the circuit is operated at near-threshold voltage or sub-threshold voltage, the transistor's current is exponentially increased near the threshold voltage. The consequence is that the process variation affects the correctness of SRAM's functionality and power consumption due to reduction of read/write noise margin, and read/write error occurs in the worst case. In this thesis, we focus on how to solve the insufficiency of write ability for low-voltage operation, so that the memory can be operated at the near-threshold voltage. In the meanwhile, we also find the optimal design by considering tradeoffs between power consumption and area. Finally, a test chip is fabricated using 40nm process to demonstrate the proposed write assist technique.

    摘 要......i Abstract......ii 致 謝......iii Contents......iv List of Tables......vi List of Figures......vii Chapter 1 Introduction......1 1.1 Background......1 1.1.1 Preliminary......1 1.1.2 Write operation of SRAM cell at the low voltage......2 1.1.3 Write Noise Margin (WNM)......3 1.1.4 Stability of Half-Selected cells......6 1.2 Motivation......9 1.3 Contributions......9 1.4 Thesis organization......10 Chapter 2 Recently Published Write Assist Techniques......11 2.1 Boost Word-Line......11 2.2 Negative Bit-Line......14 2.3 Gating power supply......16 2.4 Gating ground......18 2.5 Summary......20 2.5.1 Write noise margin for different write assist techniques......20 2.5.2 Stability of half-selected cells......22 2.5.3 Summarize these write assist techniques......23 Chapter 3 Proposed write assist technique......25 3.1 Proposed write assist technique and design concept......25 3.1.1 Write operating flow of proposed write assist design......26 3.1.2 Half-selected cells stability issue......28 3.2 Architecture of ultra-low operating voltage SRAM......33 3.3 Overall Architecture......35 Chapter 4 Test Chip Implementation......37 4.1 Chip planning......37 4.1.1 Operating flow of overall architecture......38 4.1.2 Placement and layout consideration......39 4.2 BIST design......44 Chapter 5 Simulation Results......47 5.1 Scaling cell number of virtual ground......47 5.2 Write noise margin for write assist techniques......50 5.3 The stability of the column half-selected cells for write assist techniques......52 5.4 Minimum operating voltage & power consumption for write assist techniques......53 5.5 Area overhead for write assist techniques......54 5.6 Post-layout simulation results of function for the proposed write assist design......56 5.7 Comparison......57 Chapter 6 Chip Measurement......59 6.1 Measurement flow......61 6.2 Test results......61 Chapter 7 Conclusions and Future Works......63 7.1 Conclusions......63 7.2 Future works......64 References......65 個人簡歷......69

    [1] S. R. Sridhara, M. DiRenzo, S. Lingam, L. Seok-Jun, R. Blazquez, J. Maxey, S. Ghanem, L. Yu-Hung, R. Abdallah, P. Singh, and M. Goel, "Microwatt Embedded Processor Platform for Medical System-on-Chip Applications," IEEE J. Solid-State Circuits, vol. 46, pp. 721-730, 2011.
    [2] S. C. Jocke, J. F. Bolus, S. N. Wooters, A. D. Jurik, A. C. Weaver, T. N. Blalock, and B. H. Calhoun, "A 2.6-uW sub-threshold mixed-signal ECG SoC," in Proc. IEEE Symposium on VLSI Circuits, pp. 60-61, 2009.
    [3] C. Yi-Wei, H. Yu-Hao, T. Ming-Hsien, Z. Jun-Kai, C. Yuan-Hua, J. Shyh-Jye, and C. Ching-Te, "40 nm Bit-Interleaving 12T Subthreshold SRAM With Data-Aware Write-Assist," IEEE Tran. Circuits and Systems I: Regular Papers, vol. 61, pp. 2578-2585, 2014.
    [4] J. Wang, S. Nalam, and B. H. Calhoun, “Analyzing static and dynamic write margin for nanometer SRAMs,” in Proc. IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 129-134, 2008.
    [5]http://www.opsalacarte.com/pdfs/Tech_Papers/Soft_Error_Trends_and_Mitigation_Techniques_in_Memory_Devices_Presentation_by_Charlie_Slayman,Opsalacarte.pdf
    [6] M. Zamani, S. Hassanzadeh, K. Hajsadeghi, and R. Saeidi, “A 32kb 90nm 9T-cell sub-threshold SRAM with improved read and write SNM,” in Proc. IEEE Design & Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 104–107, 2013.
    [7] T. Shakir and M. Sachdev, “A word-line boost driver design for low operating voltage 6T-SRAMs,” in Proc. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 33–36, 2012.
    [8] C. Y. Lu, C. T. Chuang, S. J. Jou, M. H. Tu, Y. P. Wu, C. P. Huang, P. S. Kan, H. S. Huang, K. D. Lee, and Y. S. Kao, "A 0.325 V, 600-kHz, 40-nm 72-kb 9T Subthreshold SRAM with Aligned Boosted Write Wordline and Negative Write Bitline Write-Assist," IEEE Tran. Very Large Scale Integration (VLSI) Systems, vol. PP, pp. 1-1, 2015.
    [9] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, F. Hamzaoglu, M. Meterelliyoz, J. Keane, U. Bhattacharya, K. Zhang, K. Mistry, and M. Bohr, “A 4.6 GHz 162 Mb SRAM Design in 22 nm Tri-Gate CMOS Technology With Integrated Read and Write Assist Circuitry,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 150–158, 2013.
    [10] M. Yamaoka, Y. Shinozaki, N. Maeda, Y. Shimazaki, K. Kato, S. Shimada, K. Yanagisawa, and K. Osada, “A 300-MHz 25-uA/Mb-leakage on-chip SRAM module featuring process-variation immunity and low-leakage-active mode for mobile-phone application processor,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 186–194, Jan. 2005.
    [11] M. Khayatzadeh and L. Yong, "Average-8T Differential-Sensing Subthreshold SRAM with Bit Interleaving and 1k Bits Per Bitline," IEEE Tran. Very Large Scale Integration (VLSI) Systems, vol. 22, pp. 971-982, 2014.
    [12] https://link.springer.com/book/10.1007%2F978-1-4020-8363-1
    [13] K. Kang, H. Jeong, Y. Yang, J. Park, K. Kim, and S.-O. Jung, “Full-Swing Local Bitline SRAM Architecture Based on the 22-nm FinFET Technology for Low-Voltage Operation,” IEEE Tran. Very Large Scale Integration (VLSI) Systems, vol. 24, no. 4, pp. 1342–1350, 2016.
    [14] L. Nan-Chun, C. Li-Wei, C. Chien-Hen, Y. Hao-I., T. Ming-Hsien, K. Paul-Sen, H. Yong-Jyun, C. Ching-Te, J. Shyh-Jye, and W. Hwang, “A 40 nm 512 kb Cross-Point 8 T Pipeline SRAM with Binary Word-Line Boosting Control, Ripple Bit-Line and Adaptive Data-Aware Write-Assist,” IEEE Tran. Circuits and Systems I: Regular Papers, vol. 61, no. 12, pp. 3416–3425, 2014.
    [15] K. Kim, H. Jeong, J. Park, and S.-O. Jung, “Transient Cell Supply Voltage Collapse Write Assist Using Charge Redistribution,” IEEE Tran. Circuits and Systems II: Express Briefs, vol. 63, no. 10, pp. 964–968, 2016.
    [16] B. Zimmer, S. O. Toh, H. Vo, Y. Lee, O. Thomas, K. Asanovic, and B. Nikolic, “SRAM Assist Techniques for Operation in a Wide Voltage Range in 28-nm CMOS,” IEEE Tran. Circuits and Systems II: Express Briefs, vol. 59, no. 12, pp. 853–857, 2012.
    [17] C. Y. Lu, C. T. Chuang, S. J. Jou, M. H. Tu, Y. P. Wu, C. P. Huang, P. S. Kan, H. S. Huang, K. D. Lee, and Y. S. Kao, "A 0.325 V, 600-kHz, 40-nm 72-kb 9T Subthreshold SRAM with Aligned Boosted Write Wordline and Negative Write Bitline Write-Assist," IEEE Tran. Very Large Scale Integration (VLSI) Systems, vol. PP, pp. 1-1, 2014.
    [18] S. Tanaka, Y. Ishii, M. Yabuuchi, T. Sano, K. Tanaka, Y. Tsukamoto, K. Nii, and H. Sato, “A 512-kb 1-GHz 28-nm partially write-assisted dual-port SRAM with self-adjustable negative bias bit-line,” in Proc. IEEE Symposium on VLSI Circuits (VLSIC), pp. 1–2. , 2014.
    [19] W.-N. Liao, N.-C. Lien, C.-S. Chang, L.-W. Chu, H.-I. Yang, C.-T. Chuang, S.-J. Jou, W. Hwang, M.-H. Tu, H.-S. Huang, J.-H. Wang, P.-S. Kan, and Y.-J. Hu, “A 40nm 1.0Mb 6T pipeline SRAM with digital-based Bit-Line Under-Drive, Three-Step-Up Word-Line, Adaptive Data-Aware Write-Assist with VCS tracking and Adaptive Voltage Detector for boosting control,” in Proc. IEEE International SOC Conference, pp. 110–115. , 2013.
    [20] K. Nii, M. Yabuuchi, H. Fujiwara, H. Nakano, K. Ishihara, H. Kawai, and K. Arimoto, “Dependable SRAM with enhanced read-/write-margins by fine-grained assist bias control for low-voltage operation,” in Proc. IEEE International SOC Conference, pp. 519–524. , 2010.
    [21] Y. Wang, E. Karl, M. Meterelliyoz, F. Hamzaoglu, Yong-Gee Ng, S. Ghosh, Liqiong Wei, U. Bhattacharya, and K. Zhang, “Dynamic behavior of SRAM data retention and a novel transient voltage collapse technique for 0.6V 32nm LP SRAM,” in Proc. IEEE International Electron Devices Meeting (IEDM), pp. 32.1.1–32.1.4. , 2011.
    [22] W.-H. Du, M.-H. Chang, H.-Y. Yang, and W. Hwang, “An energy-efficient 10T SRAM-based FIFO memory operating in near-/sub-threshold regions,” in Proc. IEEE International SOC Conference, pp. 19–23. , 2011.
    [23] S. Lutkemeier and U. Ruckert, "A subthreshold to above-threshold level shifter comprising a wilson current mirror," IEEE Tran. Circuits and Systems II: Express Briefs, vol. 57, no. 9, pp. 721-724, Sep. 2010.
    [24] N. Verma and A. P. Chandrakasan, "A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy," IEEE J. Solid-State Circuits, vol. 43, pp. 141-149, 2008.
    [25] C. Ik Joon, K. Jae-Joon, P. Sang Phill, and K. Roy, "A 32kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90nm CMOS,"IEEE J. Solid-State Circuits, vol. 44, pp.650-658, 2009.
    [26] T. Ming-Hsien, L. Jihi-Yu, T. Ming-Chien, L. Chien-Yu, L. Yuh-Jiun, W. Meng-Hsueh, H. Huan-Shun, L. Kuen-Di, S. Wei-Chiang, J. Shyh-Jye, and C. Ching-Te, "A Single-Ended Disturb-Free 9T Subthreshold SRAM With Cross-Point Data-Aware Write Word-Line Structure, Negative Bit-Line, and Adaptive Read Operation Timing Tracing," IEEE J. Solid-State Circuits, vol. 47, pp. 1469-1482, 2012.
    [27] K. Kushida, A. Suzuki, G. Fukano, A. Kawasumi, O. Hirabayashi, Y. Takeyama, T. Sasaki, A. Katayama, Y. Fujimura, and T. Yabe, “A 0.7 V Single-Supply SRAM With 0.495 〖μm〗^2 Cell in 65 nm Technology Utilizing Self-Write-Back Sense Amplifier and Cascaded Bit Line Scheme,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1192–1198, 2009.
    [28] M. E. Sinangil, N. Verma, and A. P. Chandrakasan, “A 45nm 0.5V 8T column-interleaved SRAM with on-chip reference selection loop for sense-amplifier,” in Proc. IEEE Asian Solid-State Circuits Conference, pp. 225–228, 2009.
    [29] N. Ickes, G. Gammie, M. E. Sinangil, R. Rithe, J. Gu, A. Wang, H. Mair, S. R. Datla, B. Rong, S. Honnavara-Prasad, L. Ho, G. Baldwin, D. Buss, A. P. Chandrakasan, and U. Ko, “A 28 nm 0.6 V Low Power DSP for Mobile Applications,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 35–46, 2012.
    [30] S. Okumura, Y. Iguchi, S. Yoshimoto, H. Fujiwara, H. Noguchi, K. Nii, H. Kawaguchi, and M. Yoshimoto, “A 0.56-V 128kb 10T SRAM using column line assist (CLA) scheme,” in Proc. IEEE International Symposium on Quality of Electronic Design, pp. 659–663, 2009.
    [31] D. Anh-Tuan, J. Y. S. Low, J. Y. L. Low, Z.-H. Kong, X. Tan, and K.-S. Yeo, “An 8T Differential SRAM With Improved Noise Margin for Bit-Interleaving in 65 nm CMOS,” IEEE Tran. Circuits and Systems I: Regular Papers, vol. 58, no. 6, pp. 1252–1263, 2011.
    [32] T.-H. Kim, J. Liu, and C. H. Kim, “A Voltage Scalable 0.26 V, 64 kb 8T SRAM With V_min Lowering Techniques and Deep Sleep Mode,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1785–1795, 2009.
    [33] M. E. Sinangil, N. Verma, and A. P. Chandrakasan, “A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3163–3173, 2009.
    [34] A. Raychowdhury, B. Geuskens, J. Kulkarni, J. Tschanz, K. Bowman, T. Karnik, S.-L. Lu, V. De, and M. M. Khellah, “PVT-and-Aging Adaptive Wordline Boosting for 8T SRAM Power Reduction,” in Proc. International Solid-State Circuits Conference (ISSCC), pp. 352–353, 2010.
    [35] Y.-H. Chen, W.-M. Chan, W.-C. Wu, H.-J. Liao, K.-H. Pan, J.-J. Liaw, T.-H. Chung, Q. Li, G. H. Chang, C.-Y. Lin, M.-C. Chiang, S.-Y. Wu, S. Natarajan, and J. Chang, “A 16nm 128Mb SRAM in High-κ Metal-Gate FinFET Technology with Write-Assist Circuitry for Low-V_min Applications,” in Proc. International Solid-State Circuits Conference (ISSCC), pp. 238–239, 2014.
    [36] Y.-H. Chen, W.-M. Chan, W.-C. Wu, H.-J. Liao, K.-H. Pan, J.-J. Liaw, T.-H. Chung, Q. Li, C.-Y. Lin, M.-C. Chiang, S.-Y. Wu, and J. Chang, “A 16 nm 128 Mb SRAM in High-κ Metal-Gate FinFET Technology With Write-Assist Circuitry for Low-VMIN Applications,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 170–177, 2015.
    [37] E. Karl, Z. Guo, J. Conary, J. Miller, Y.-G. Ng, S. Nalam, D. Kim, J. Keane, X. Wang, U. Bhattacharya, and K. Zhang, “A 0.6 V, 1.5 GHz 84 Mb SRAM in 14 nm FinFET CMOS Technology With Capacitive Charge-Sharing Write Assist Circuitry,” IEEE J. Solid-State Circuits, vol. 51, no. 1, pp. 222–229, 2016.
    [38] M.-F. Chang, C.-F. Chen, T.-H. Chang, C.-C. Shuai, Y.-Y. Wang, and H. Yamauchi, “A 28nm 256kb 6T-SRAM with 280mV Improvement in V_min Using a Dual-Split-Control Assist Scheme,” in Proc. International Solid-State Circuits Conference (ISSCC), pp. 1–3, 2015.
    [39] V. P.-H. Hu, M.-L. Fan, P. Su, and C.-T. Chuang, “Analysis of GeOI FinFET 6T SRAM Cells With Variation-Tolerant WLUD Read-Assist and TVC Write-Assist,” IEEE Trans. Electron Devices, vol. 62, no. 6, pp. 1710–1715, 2015.
    [40] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer, R. H. Dennard, W. Haensch, and D. Jamsek, “An 8T-SRAM for Variability Tolerance and Low-Voltage Operation in High-Performance Caches,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 956–963, 2008.

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE