簡易檢索 / 詳目顯示

研究生: 翁梃嘉
Weng, Ting-Chia
論文名稱: 雙面式感應二氧化錫微機電氣體感測器
Bifacial Sensing Sides SnO2 MEMS Gas Sensor
指導教授: 張守進
Chang, Shoou-Jinn
陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 82
中文關鍵詞: 二氧化錫微機電系統氣體感測器
外文關鍵詞: SnO2, MEMS, Gas Sensor
相關次數: 點閱:93下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球技術產業一直推動了工業和城市的發展。隨著車輛,工廠的不斷增加,空氣質量受到重大影響。常見的空氣污染物包括顆粒污染物,硫氧化物(SOx),氮氧化物(NOx)和揮發性有機化合物(VOCs)如甲醛,乙醇,丙烯等。這些空氣污染物引起疾病和災害。現有市場上的氣體傳感器數量龐大。它們只能安裝在固定位置或手持設備上。人們難以攜帶許多氣體傳感器進行手持式檢測。因此,如果我們可以將每顆氣體傳感器集成到一個普通的移動設備中,達到環境監測的目的,以“人”為中心的檢測行動,而這個概念目前已經得到了全世界的關注。
    在2016年時,國際Yole Development做個一份預估報告,在2021年氣體感測器的使用量會從2014年的120萬個,增加到3億5000萬個,成長約300倍,產值將超過20億美元,且絕大部分使用於智慧型手機(Smart Phone)。然而,要整合於智慧型手機上,氣體感測器必須達到微小化及低耗能。目前為有以微機電系統(MEMS)技術所開發半導體式晶片型氣體感測器能達到最微小化、最低耗能及低成本,備受矚目。
    在這篇研究中,製作了兩種微機電氣體感測器,微加熱器和氧化錫(SnO2)氣體感測膜皆使用MEMS技術集成。第一種為單面式感應氣體感測器,在微加熱器方面,我們先沉積50nm的Cr,接著沉積Ni,其厚度為250nm。此微加熱器的熱影像分析可以測量達250℃的溫度。在SnO2感測薄膜方面,在沉積600nm的厚度之後,我們對不同濃度的乙醇,NH3和NO進行動態氣體反應量測。第二種為雙面式感應氣體感測器,在此新的結構當中,我們先沉積2um的SnO2,作為底部感應層,接著沉積100nm的Cr和500nm 的Ni,最後沉積1.2um 的SnO2,作為頂部感應層。透過製作雙面式感應氣體感測器,我們期許可以利用這種方式,在尺寸不變的情況下,增加感應面積,讓氣體響應度上升。

    Global technology industry has been driven the development of industry and cities. With the increasing factors of vehicles and factories, the air quality was significantly affected. The common air pollutants includes particulate pollutants, sulfur oxides (SOx), nitrogen oxides (NOx) and volatile organic compounds (VOCs) such as formaldehyde, ethanol, propylene, etc. These air pollutants cause diseases and disasters. The volume of the gas sensors on the existing market is large. They can only be installed in a fixed position or handheld. It’s difficult for people to bring many gas sensors to do the handheld detection. Therefore, if we can develop the integration of each gas sensor into a common mobile device, achieve the purpose of environmental monitoring and action the detection with "people" as the center of it. This concept has got the whole world’s attention.
    In 2016, the international Yole Development made an estimate that the use of gas sensors in 2021 increased from 1.2 million in 2014 to 350 million. The growing is about 300 times. The output would be more than 2 billion dollars. The gas sensor majority used in smart phones. However, to be integrated on the smart phone, the gas sensor must be miniaturized and low in energy consumption. At present, there are micro electro mechanical systems (MEMS) technology developed by the semiconductor chip gas sensor can achieve the most miniaturization, the lowest energy consumption, low cost and high-profile.
    In this study, we fabricate two kinds of gas sensor. The micro-heater and tin oxide (SnO2) gas sensing films were fabricated using MEMS technology. The first one is a single-sided sensing gas sensor. In the micro-heater, we first deposited 50nm Cr, followed by the deposition of Ni. The thickness of Ni is 250nm. The thermal image analysis of this micro-heater can be measured at temperatures up to 250 ℃. In the SnO2 sensing film, we measured the dynamic gas reaction of ethanol, NH3 and NO with different concentration after depositing a thickness of 600 nm. The second one is a bifacial sensing gas sensor. In this new structure, we first deposited 2um of SnO2 as the bottom sensing layer, followed by the deposition of 100nm Cr and 500nm of Ni. Finally, we deposit 1.2um SnO2 to be top sensing layer. Through the production of bifacial sensing gas sensor, we increase the sensing area of the gas sensor with the size unchanged. We wish that we can make the sensitivity increase.

    摘要…………………………………………………………......Ⅰ Abstract………………………………………………………..Ⅲ 誌謝…………………………………………………………...Ⅴ Content………………………………………………………..Ⅵ Table Caption………………………………………………… XI Figure Caption…………………………………………...….. XII Chapter 1 Introduction………………………………………..1 1.1 Background and Motivation…………………………………1 1.2 Through Silicon Via Overview………………………………2 1.3 Gas sensor Overview………………………………………...3 Chapter 2 Fabrication System and Important Parameters…..11 2.1 Fabrication System of SnO2 MEMS Gas Sensor…………..11 2.1.1 RCA clean System…………………………………..11 2.1.2 RF Sputtering………………………………………..12 2.1.3 Furnace Tube System………………...……………..12 2.1.4 Mask Aligner………………………………………..13 2.1.5 Plasma Enhance Chemical Vapor Deposition & Ion Coupled Plasma Etching System…………………………………………………14 2.1.6 Thermal Evaporation………………………………..15 2.1.7 EB + RH Deposition System………………………..16 2.2 Analysis Equipment ………………………………………..16 2.2.1 Scanning Electrons Microscope…………………….16 2.2.2 Infrared Thermal Imager……………………………17 2.2.3 Focus Ion Beam……………………………………..18 2.3 Important Parameters and Related Mechanism…………….19 2.3.1 Bosch DRIE and Cryogenic DRIE………………….19 2.3.2 SnO2 Gas Sensing Mechanism……………….……..21 2.3.3 Resistive microheater……………………………….24 Chapter 3 Experiment Methods and Process………………..32 3.1 Experiment Procedure……………………………………...32 3.2 Single Sensing Side SnO2 MEMS Gas Sensor Experiment Process Steps………………………………………………………33 3.2.1 RCA Clean Wafers…………………………………33 3.2.2 SiO2 Insulator by Furnace….………………………34 3.2.3 PECVD Si3N4 Growth.…………………………….34 3.2.4 Photo Lithography…………………………………34 3.2.5 Cr/Ni/Au Deposited by E-gun……………………..34 3.2.6 PECVD SiO2 Growth……………………………...35 3.2.75Photo Lithography…………………………………35 3.2.8 Etching SiO2……………………………………….35 3.2.9 Photo Lithography…………………………………35 3.2.10 RF Sputter SnO2…………………………………….35 3.2.11 RF Sputter Al………………………………………36 3.2.12 Photo Lithography…………………………………36 3.2.13 Wet Etching Al……………………………………..36 3.2.14 Silicon Oxide Etched by RIE...……………………37 3.2.15 Silicon Etched by ICP……………………………..37 3.2.16 Wire Bonding………………………………………38 3.3 Bifacial Sensing Sides SnO2 MEMS Gas Sensor Experiment Process Steps………………………………………………………38 3.3.1 RCA Clean Wafers…………………………………38 3.3.2 SiO2 Insulator by Furnace………………………….38 3.3.3 Photo Lithography…………………………………39 3.3.4 Etching SiO2 by BOE……………………………...39 3.3.5 RF Sputter SnO2…………………………………...39 3.3.6 Photo Lithography…………………………………40 3.3.7 Cr/Ni/Au Deposited by E-gun……………………..40 3.3.8 PECVD SiO2 Growth……………………………...40 3.3.9 Photo Lithography…………………………………40 3.3.10 Etching SiO2 by BOE……………………………...41 3.3.11 Photo Lithography…………………………………41 3.3.12 RF Sputter SnO2…………………………………...41 3.3.13 RF Sputter Al………………………………………42 3.3.14 Photo Lithography…………………………………42 3.3.15 Wet Etching Al……………………………………..42 3.3.16 Silicon Etched by ICP……………………………..43 3.3.17 Wire Bonding………………………………………43 Chapter 4 Results and Discussion…………………………...49 4.1 Single Sensing Side Sensor Analysis and Electrical Characteristic………………………………………………………49 4.1.1 Analysis of the gas sensor structure………………...49 4.1.2 Electrical Characteristic of the Gas Sensor……..…..50 4.2 Bifacial Sensing Sides Sensor Analysis and Electrical Characteristic………………………………………………………53 4.2.1 Analysis of the gas sensor structure………………...53 4.2.2 Electrical Characteristic of the Gas Sensor……..…..54 Chapter 5 Conclusion and Future Work…………………….72 5.1 Conclusion…………………………………………………72 5.2 Future Work………………………………………………..74 Reference……………………………………………………...75 Reference in Chapter 1…………………………………………....75 Reference in Chapter 2…………………………………………....80

    Reference in Chapter 1
    [1] Qi, Qi; Zhang, Tong; Wang, Shujuan, “Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 137, issue. 2, pp. 649-655, Apr., 2009.
    [2] Vander Wal, R. L.; Hunter, G. W.; Xu, J. C, “Metal-oxide nanostructure and gas-sensing performance” SENSORS AND ACTUATORS B-CHEMICAL, vol. 138, issue. 1, pp. 113-119, Apr., 2009.
    [3] Roeck, Frank; Barsan, Nicolae; Weimar, Udo, “Electronic nose: Current status and future trends” CHEMICAL REVIEWS, vol. 108, issue. 2, pp. 705-725, Feb., 2008.
    [4] Kumar, Rajesh; Al-Dossary, O.; Kumar, Girish, “Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review” NANO-MICRO LETTERS, vol. 7, issue. 2, pp. 97-120, Apr., 2015.
    [5] Behera, Bhagaban; Chandra, Sudhir, “An innovative gas sensor incorporating ZnO-CuO nanoflakes in planar MEMS technology” SENSORS AND ACTUATORS B-CHEMICAL, vol. 229, pp. 414-424, Jun., 2016 .
    [6] Y. H. Chen, S. J. Chang, and T. J. Hsueh, “Three-dimensional ZnO nanostructure photodetector prepared with through silicon via technology,” Optics Letters, vol. 40, no. 12, pp.2878-2881, Jun. 2015.
    [7] T. K. Cheng, and K. N. Chen, “Wafer-level bonding/stacking technology for 3D integration,” Microelectronics Reliability, vol. 5, no. 4, pp.481–488, Apr. 2010.
    [8] Ramm P, and Klumpp A, “Through-silicon via technologies for extreme miniaturized 3D integrated wireless sensor systems (e-CUBES),” IEEE IITC, pp.7-9, Jun. 2008.
    [9] Feng, Ying; Burkett, Susan L, “Fabrication and electrical performance of through silicon via interconnects filled with a copper/carbon nanotube composite,” JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, vol. 33, issue. 2, Mar. 2015.
    [10] Al-Sarawi S, Abbott D, and Franzon P, “A review on 3-D packaging technology,” IEEE Transactions on Components and Packaging Technologies, part B, vol. 21, no. 1, pp.2-14, Feb. 1998.
    [11] Koyanagi M, Kurino H, Lee KW, Sakuma K, Miyakawa N, and Itani H, “Future system-on- silicon LSI chips,” IEEE Micro, vol. 18, no. 4, pp.17-22, Jul. 1998.
    [12] R. Ishihara, J. Derakhshandeh, M.R. Tajari Mofrad, T. Chen, N. Golshani, and C.I.M. Beenakker, “Monolithic 3D-ICs with single grain Si thin film transistors,” Solid-State Electronics, vol. 71, pp.80–87, May. 2012.
    [13] C. Wagner, K. Hauffe, “The stationary state of catalysts in homogeneous reactions,” Ztschr. Elektrochem, vol. 33, pp.172, Jun. 1921.
    [14] Zainab Yunusa, Mohd. Nizar Hamidon, Ahsanul Kaiser, Zaiki Awang, “Gas Sensors: A Review,” Sensors & Transducers, vol. 168, issue 4, pp. 61-75, Apr. 2014.
    [15] Wang, Chengyang; Jin, Jiandong; Li, Yuling, “Design and fabrication of a MEMS-based gas sensor containing WO3 sensitive layer for detection of NO2,” JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, vol. 16, issue 1, document number: 015002, Jan. 2017.
    [16] Sberveglieri G, “Recent developments in semiconducting thin-film for gas sensors,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 23, issue 2-3, pp. 103-109, Feb. 1995.
    [17] Wang C, et al., “Nanosheets assembled hierarchical flower-like WO3 nanostructures: synthesis, characterization, and their gas sensing properties,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 210, pp. 75-81, Apr. 2015.
    [18] European Office, Oststrasse, Figaro Products Catalogue, Figaro Gas Sensors 2000-Series, Figaro Engineering Inc., Dusseldorf, Germany, 2006.
    [19] Yamzoe N, “Metal oxide semiconductor gas sensor,” ELECTROCHEMISTRY, vol. 71, issue 4, pp. 590-591, Jul. 2013.
    [20] Behera, Bhagaban; Chandra, Sudhir, “An innovative gas sensor incorporating ZnO-CuO nanoflakes in planar MEMS technology,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 229, pp. 414-424, Jun. 2016.
    [21] Meier, Douglas C.; Semancik, Steve; Button, Bradley, “Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms,” APPLIED PHYSICS LETTERS, vol. 91, issue 6, document number: 063118, Aug. 2007.
    [22] Liewhiran, Chaikarn; Phanichphant, Sukon, “Influence of thickness on ethanol sensing characteristics of doctor-bladed thick film from flame-made ZnO nanoparticles,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 7, issue. 2, pp. 185-201, Feb. 2007.
    [23] Wang, Hairong; Sun, Qiao; Yao, Yuqing, “A micro sensor based on TiO2 nanorod arrays for the detection of oxygen at room temperature,” CERAMICS INTERNATIONAL, vol. 42, issue.7, pp. 8565-8571, May. 2016.
    [24] Blaschke, Michael; Tille, Thomas; Robertson, Phil, “MEMS gas-sensor array for monitoring the perceived car-cabin air quality,” IEEE SENSORS JOURNAL, vol. 6, issue. 5, pp. 1298-1308, Oct. 2016.
    [25] Hou, Zhongyu; Wu, Hahao; Zhou, Weimin, “A MEMS-based ionization gas sensor using carbon nanotubes,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 54, issue. 6, pp. 1545-1548, Jun. 2007.
    [26] Lee, Chia-Yen; Chiang, Che-Ming; Wang, Yu-Hsiang, “A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 122, issue. 2, pp. 503-510, Mar. 2007.
    [27] Lee, Eui-Bok; Hwang, In-Sung; Cha, Jung-Ho, “Micromachined catalytic combustible hydrogen gas sensor,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 152, issue. 2, pp. 392-397, Apr. 2011.
    [28] Bhattacharyya, P.; Basu, P. K.; Mondal, B., “A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane,” MICROELECTRONICS RELIABILITY , vol. 48, issue. 11-12, pp. 1772-1779, Nov. 2008.
    [29] Bierer, B.; Kneer, J.; Woellenstein, J., “MEMS based metal oxide sensor for simultaneous measurement of gas induced changes of the heating power and the sensing resistance,” MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, vol. 22, pp. 1855-1863, Jul. 2016.
    [30] Mozalev, Alexander; Calavia, Raul; Vazquez, Rosa M, “MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer,”INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 38, issue. 19, pp. 8011-8021, Jun. 2013.
    [31] Lee, Chia-Yen; Hsieh, Ping-Ru; Lin, Che-Hsin, “MEMS-based formaldehyde gas sensor integrated with a micro-hotplate,” MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, vol. 12, issue. 10-11, pp. 893-898, Sep. 2006.
    Reference in Chapter 2
    [1] NCKU Micro-Nano Technology Center/Southern Region MEMS Center
    [2] Martin J Walker, “Comparison of Bosch and Cryogenic processes for patterning high aspect ratio features in silicon,” SPIE Proceedings, vol. 4407, pp. 89-99, Apr. 2001.
    [3] Roxhed, Niclas; Griss, Patrick; Stemme, Goran, “A method for tapered deep reactive ion etching using a modified Bosch process,” JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 17, issue. 5, pp. 1087-1092, May. 2007.
    [4] Kida, Tetsuya; Doi, Takayuki; Shimanoe, Kengo, “Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds,” CHEMISTRY OF MATERIALS, vol. 22, issue. 8, pp. 2662-2667, Apr. 2010.
    [5] Kou, Xueying; Wang, Chong; Ding, Mengdi, “Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 236, pp. 425-432, Nov. 2016.
    [6] Yamzoe, N, “Metal oxide semiconductor gas sensor,” ELECTROCHEMISTRY, vol. 236, issue. 7, pp. 590-591, Jul. 2003.
    [7] Wang, Dawei; Du, Sisi; Zhou, Xin, “Template-free synthesis and gas sensing properties of hierarchical hollow ZnO microspheres,” CRYSTENGCOMM, vol. 15, issue. 31, pp. 7438-7442, 2013.
    [8] Gong, H; Wang, YJ; Teo, SC, “Interaction between thin-film tin oxide gas sensor and five organic vapors,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 54, issue. 3, pp. 232-235, Mar. 1999.
    [9] YAMAZOE, N, “NEW APPROACHES FOR IMPROVING SEMICONDUCTOR GAS SENSORS,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 5, issue. 1-4, pp. 7-19, Aug. 1991.
    [10] Li, Xiaowei; Zhou, Xin; Liu, Yang, “Microwave hydrothermal synthesis and gas sensing application of porous ZnO core-shell microstructures,” RSC ADVANCES, vol. 4, issue. 61, pp. 32538-32543, 2014.
    [11] Egashira, M; Shimizu, Y; Takao, Y, “Variations in I-V characteristics of oxide semiconductors induced by oxidizing gases,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 35, issue. 1-3, pp. 62-67, Sep. 1996.
    [12] Liu, Jiangyang; Wang, Chen; Yang, Qiuyue, “Hydrothermal synthesis and gas-sensing properties of flower-like Sn3O4,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 224, pp. 128-133, Mar. 2016.
    [13] Tischner, Alexandra; Maier, Thomas; Stepper, Christoph, “Ultrathin SnO2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 134, issue. 2, pp. 796-802, Sep. 2008.

    下載圖示 校內:2022-03-23公開
    校外:2022-03-23公開
    QR CODE