簡易檢索 / 詳目顯示

研究生: 陳彥溥
Chen, Yen-Pu
論文名稱: 智慧人因照明調控系統開發及其教室成效評估
Development of an intelligent human centric lighting control system and its efficacy in classrooms
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 112
中文關鍵詞: 日光聯動控制智慧照明人因照明物聯網照度調控
外文關鍵詞: Daylight linked control system, intelligent lighting, human centric lighting, Internet of things, lighting control
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發符合人因照明自動調控之智慧照明系統,該系統整合日光聯動控制概念於物聯網架構中,可進行燈座遠端控制並收集實際場域(教室)的感測器數據,建立雲端資料驅動模型(Data driven model),並應用最佳化控制理論達成教室照度與目標設定一致。資料驅動模型主要由兩個模式組成,分別對應室內自然採光和燈座人工光源分布,並定義為日光模式與夜間模式,而此兩種模式的計算結果總合可代表室內照明的情況,日光模式的輸入為位於窗戶的物聯網感測器的量測值,而夜間模式的輸入為物聯網燈座狀態。本論文提出建構資料驅動模型的方法與流程,可解決傳統上部署基於感測器的照明調控系統的困難,以數學模型詮釋感測器資料,將室內照明環境進行數位化轉換,並利用非上課時間進行數據收集以進行建模和驗證。夜間模式計算結果與實際感測器量測值的平均絕對誤差、平均相對誤差和方均根誤差分別為6.63 Lux、1.08%和8.25 Lux,而日光模式計算結果與實際感測器量測值的平均絕對誤差、平均相對誤差和方均根誤差分別為12.66 Lux、7.05%和15.35 Lux。此外,本論文也開發基於資料驅動模型的控制最佳化演算法,其根據物聯網感測器的輸入,先計算出室內採光狀況後,演算法再依照目標照度值設定,劃分出基於燈座照度可調控的空間範圍,並在此空間範圍進行整數線性規劃,得出各個燈座最佳的開關狀態。本研究最佳化演算法的評估以特定日期和特定時間(08:00、09:00、10:00和11:00)之照度數據為輸入,將照度目標設定為750、1,000、1,250和1,500 Lux進行最佳化控制計算,控制結果與設定目標的平均絕對誤差、平均相對誤差和方均根誤差分別為29.72 Lux、2.75%和37.46 Lux。最後,透過實際建構的智慧光照調控系統,使最佳化控制結果可實際實施於實體的教學場域中。
    關鍵字: 日光聯動控制、智慧照明、人因照明、物聯網、照度調控

    This thesis aims to develop an intelligent lighting system that conforms to the automatic regulation of human centric lighting. The system integrates the concept of daylight-linked controls into the Internet of Things (IoT) architecture to perform remote control of luminaires, collect sensor data in classrooms to establish a cloud-based data-driven model, and apply the optimal control theory to achieve the target setting consistency of classroom illumination. The data-driven model is mainly composed of two modes defined as the daylight mode and the night mode, which correspond to indoor daylighting and the light distribution controlled by the luminaires. The sum of the calculation results of these two modes can represent the indoor lighting situation. The inputs of the daylight mode and night mode are the data from the IoT ambient light sensors deployed in specific locations and the data regarding the switch status of IoT luminaries. This study proposes the method and process of constructing the data-driven model, which could solve the difficulty of installing the sensor-based lighting control system in a traditional way. The model-building process involves the mathematical interpretation of the sensor data and uses the non-class time to collect data for modeling and verification. The mean absolute error (MAE), mean relative error (MRAE) and root mean square error (RMAE) of the verification results of the night mode are 6.63 Lux, 1.08% and 8.25 Lux, respectively, while the MAE, MRAE and RMAE of the verification results of the daylight mode are 12.66 Lux, 7.05% and 15.35 Lux, respectively. In addition, this study also develops an optimal control algorithm based on a data-driven model, which first calculates the indoor lighting conditions based on the inputs of the IoT sensors. After that, the algorithm divides the space range whose illuminance is adjustable by the luminaires according to the target illuminance value setting, and then performs integer linear programming in the space range to obtain the optimal switching state of the luminaires. The evaluation of the optimization results is based on the illuminance data of four break-time periods between classes (08:00, 09:00, 10:00: 00, 11:00) of a specific date as input, the illuminance targets are set at 750, 1,000, 1,250 and 1,500 Lux. The MAE, MRAE and RMAE of the control result and the set target are 29.72 Lux, 2.75% and 37.46 Lux, respectively. Finally, by constructing the intelligent lighting control system in classrooms, the optimal control results can be implemented in the physical teaching field.
    Key Word: Daylight linked control system, intelligent lighting, human centric lighting, Internet of things, lighting control

    摘 要 i Abstract iii 誌謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 第1章 緒論 1 1.1 研究動機與背景 1 1.2 文獻探討 9 1.2.1 環境光感測器的特性、位置與控制校正 11 1.2.2 控制區域的劃分 13 1.2.3 控制架構與燈具調整方式的選擇 14 1.3 研究目的 16 1.4 論文架構 18 第2章 智慧光照調控系統 19 2.1 系統架構 19 2.2 硬體架構 21 2.2.1 切換智慧光照調控系統配電箱 21 2.2.2 燈光控制器組件 22 2.2.3 環境光感測器組件 23 2.2.4 LED燈具 25 2.3 軟韌體設計和流程 28 2.3.1 燈座控制器韌體模組 28 2.3.2 環境光感測器韌體模組 29 2.3.3 雲端運算平台 30 2.4 IoT 通訊協定-MQTT 32 2.5 網頁及APP控制介面 33 2.5.1 平板控制APP 33 2.5.2 系統維護工程師介面 35 第3章 智慧光照調控演算法 38 3.1 Dailux Evo建立模型及場域模擬 39 3.1.1 教室採光特性 40 3.1.2 燈座分布對於照度分布特性 41 3.2 數學模型詮釋 42 3.2.1 雙變數內插 43 3.2.2 單變數擬合函數 45 3.3 夜間模式建立 48 3.3.1 光感測器校正 50 3.3.2 控制模型資料收集 51 3.3.3 感測器與燈座相對位置計算 54 3.3.4 建立單一燈座模型 58 3.3.5 建立空間校正模型 62 3.3.6 夜間模式計算流程建構 64 3.3.7 更新照度與距離的函數 66 3.4 日光模式建立 67 3.4.1 日光模式資料收集 68 3.4.2 建立窗戶輸入模型 69 3.4.3 日光模式計算流程建構 71 3.5 燈光控制最佳化演算法 72 3.5.1 線性規劃 73 3.5.2 整數線性規劃 75 3.5.3 控制模式2和模式3的微調方式 80 第4章 場域實驗結果與討論 81 4.1 驗證資料集 81 4.2 控制結果評估指標 83 4.3 驗證模型有效性的方法與結果 83 4.4 夜間模式驗證結果分析與討論 85 4.5 日光模式驗證結果分析與討論 86 4.6 最佳化控制結果 89 4.7 智慧光照調控系統場域實證成效 95 4.8 Dailux Evo人因照明的照度設定 99 第5章 結論 101 5.1 結論 101 5.2 未來工作 102 參考文獻 104

    [1] “台灣學生睡眠及使用提神飲料調查報告記者會,” [Online]. Available: https://www.children.org.tw/news/news_detail/2423 (accessed Aug. 14, 2022).
    [2] “20160308台灣睡眠醫學學會最新調查.pdf.” [Online]. Available: http://www.tssm.org.tw/file/1483682380.pdf (accessed Aug. 14, 2022).
    [3] “後疫情時代2022 年321世界睡眠日 以優質睡眠迎接幸福未來!.” [Online]. Available: https://www.simmonstaiwan.com.tw/News/Detail/65 (accessed Aug. 14, 2022).
    [4] “New Year’s resolution: Don’t let COVID-somnia drag you down - AASM,” [Online]. Available: https://aasm.org/new-years-resolution-dont-let-covid-somnia-drag-you-down/ (accessed Aug. 14, 2022).
    [5] M. J. Kim, J. H. Lee, and J. F. Duffy, “Circadian Rhythm Sleep Disorders,” Journal of clinical outcomes management, vol. 20, no. 11, pp. 513–528, Nov. 2013.
    [6] J. F. Duffy et al., “Workshop report. Circadian rhythm sleep–wake disorders: gaps and opportunities,” Sleep, vol. 44, no. 5, p. zsaa281, May 2021, doi: 10.1093/sleep/zsaa281.
    [7] C. Barkmann, N. Wessolowski, and M. Schulte-Markwort, “Applicability and efficacy of variable light in schools,” Physiology & Behavior, vol. 105, no. 3, pp. 621–627, Feb. 2012, doi: 10.1016/j.physbeh.2011.09.020.
    [8] O. Keis, H. Helbig, J. Streb, and K. Hille, “Influence of blue-enriched classroom lighting on students׳ cognitive performance,” Trends in Neuroscience and Education, vol. 3, no. 3, pp. 86–92, Sep. 2014, doi: 10.1016/j.tine.2014.09.001.
    [9] N. Wessolowski, H. Koenig, M. Schulte-Markwort, and C. Barkmann, “The effect of variable light on the fidgetiness and social behavior of pupils in school,” Journal of Environmental Psychology, vol. 39, Sep. 2014, doi: 10.1016/j.jenvp.2014.05.001.
    [10] K. Schledermann, H. Pihlajaniemi, S. Sen, and E. Hansen, “Dynamic lighting in classrooms: A new interactive tool for teaching,” in Interactivity, Game Creation, Design, Learning, and Innovation, 2019, pp. 374–384. doi: 10.1007/978-3-030-06134-0_41.
    [11] K. Choi and H.-J. Suk, “Dynamic lighting system for the learning environment: performance of elementary students,” Optics Express, vol. 24, no. 10, p. A907, May 2016, doi: 10.1364/OE.24.00A907.
    [12] K. Choi, C. Shin, T. Kim, H. J. Chung, and H.-J. Suk, “Awakening effects of blue-enriched morning light exposure on university students’ physiological and subjective responses,” Scientific Reports, vol. 9, no. 1, p. 345, Dec. 2019, doi: 10.1038/s41598-018-36791-5.
    [13] M. S. Mott, D. H. Robinson, A. Walden, J. Burnette, and A. S. Rutherford, “Illuminating the effects of dynamic lighting on student learning,” SAGE Open, vol. 2, no. 2, p. 2158244012445585, Apr. 2012, doi: 10.1177/2158244012445585.
    [14] A. U. Viola, L. M. James, L. J. Schlangen, and D.-J. Dijk, “Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality,” Scandinavian Journal of Work, Environment & Health, vol. 34, no. 4, pp. 297–306, 2008, doi: 10.5271/sjweh.1268.
    [15] M. Boubekri, I. N. Cheung, K. J. Reid, C.-H. Wang, and P. C. Zee, “Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study,” Journal of clinical sleep medicine, vol. 10, no. 6, pp. 603–611, Jun. 2014, doi: 10.5664/jcsm.3780.
    [16] M. G. Figueiro et al., “The impact of daytime light exposures on sleep and mood in office workers,” Sleep Health, vol. 3, no. 3, pp. 204–215, Jun. 2017, doi: 10.1016/j.sleh.2017.03.005.
    [17] E. J. Wams et al., “Linking light exposure and subsequent sleep: A field polysomnography study in humans,” Sleep, vol. 40, no. 12, Dec. 2017, doi: 10.1093/sleep/zsx165.
    [18] A. Wirz-Justice et al., “A randomized, double-blind, placebo-controlled study of light therapy for antepartum depression,” The Journal of Clinical Psychiatry, vol. 72, no. 7, p. 16750, Apr. 2011, doi: 10.4088/JCP.10m06188blu.
    [19] D. K. Sit et al., “Adjunctive bright light therapy for bipolar depression: A randomized double-blind placebo-controlled trial,” American Journal of Psychiatry, vol. 175, no. 2, pp. 131–139, Feb. 2018, doi: 10.1176/appi.ajp.2017.16101200.
    [20] “工研院攜手臺北榮總新竹分院打造醫療照護場域智慧光環境,” [Online]. Available:https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=01_content&SiteID=1&MmmID=1036276263153520257&MGID=109070814340859741 (accessed Jul. 10, 2022).
    [21] J. Weisman, “Tuned lighting helps nursing home residents get better sleep, study finds,” [Online]. Available: https://www.brown.edu/news/2020-10-06/lighting (accessed Jul. 10, 2022).
    [22] K. W. Houser and T. Esposito, “Human-centric lighting: Foundational considerations and a five-step design process,” Front Neurol, vol. 12, p. 630553, 2021, doi: 10.3389/fneur.2021.630553.
    [23] C. Blume, C. Garbazza, and M. Spitschan, “Effects of light on human circadian rhythms, sleep and mood,” Somnologie, vol. 23, no. 3, pp. 147–156, Sep. 2019, doi: 10.1007/s11818-019-00215-x.
    [24] M. Rea, M. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Lighting Research & Technology, vol. 44, no. 4, pp. 386–396, Dec. 2012, doi: 10.1177/1477153511430474.
    [25] “Circadian lighting design | WELL Standard,” [Online]. Available: https://standard.wellcertified.com/light/circadian-lighting-design (accessed Jul. 29, 2022).
    [26] “GLA_Roadmap_usl_web.pdf.” [Online]. Available: https://www.globallightingassociation.org/images/files/GLA_Roadmap_usl_web.pdf (accessed Sep. 02, 2022).
    [27] “從照明燈具邁向系統應用:材料世界網” [Online]. Available: https://www.materialsnet.com.tw/DocView.aspx?id=37912 (accessed Jul. 10, 2022).
    [28] “IEKView:智慧照明藍海 全球搶進.” [Online]. Available: https://ieknet.iek.org.tw/iekrpt/rpt_detail.aspx?indu_idno=5&domain=28&rpt_idno=75259113 (accessed Jul. 10, 2022).
    [29] “Philips Hue 智慧照明” [Online]. Available: https://www.philips-hue.com/zh-tw/explore-hue/philips-hue-benefits (accessed Aug. 06, 2022).
    [30] “The Benefits of Daylight Through Windows” [Online]. Available: https://books.google.com.tw/books?id=rudAGwAACAAJ (accessed Aug. 06, 2022).
    [31] M. B. C. Aries, J. A. Veitch, and Guy. R. Newsham, “Windows, view, and office characteristics predict physical and psychological discomfort,” Journal of Environmental Psychology, vol. 30, no. 4, pp. 533–541, Dec. 2010, doi: 10.1016/j.jenvp.2009.12.004.
    [32] M. Bodart and A. De Herde, “Global energy savings in offices buildings by the use of daylighting,” Energy and Buildings, vol. 34, no. 5, pp. 421–429, Jun. 2002, doi: 10.1016/S0378-7788(01)00117-7.
    [33] K. Rijal Wagiman, M. Noor Abdullah, M. Yusri Hassan, and N. H. Mohammad Radzi, “A review on sensing-based strategies of interior lighting control system and their performance in commercial buildings,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 16, no. 1, p. 208, Oct. 2019, doi: 10.11591/ijeecs.v16.i1.pp208-215.
    [34] “Annual Lighting Forum • National Lighting Bureau (NLB ),” [Online]. Available: https://nlb.org/annual-lighting-forum/ (accessed Jul. 11, 2022).
    [35] M. C. Giménez, O. Stefani, C. Cajochen, D. Lang, G. Deuring, and L. J. M. Schlangen, “Predicting melatonin suppression by light in humans: Unifying photoreceptor‐based equivalent daylight illuminances, spectral composition, timing and duration of light exposure,” Journal of Pineal Research, vol. 72, no. 2, Mar. 2022, doi: 10.1111/jpi.12786.
    [36] “Energy Information Administration (EIA)- Commercial Buildings Energy Consumption Survey (CBECS).” [Online]. Available: https://www.eia.gov/consumption/commercial/ (accessed Jul. 10, 2022).
    [37] L. Bellia, F. Fragliasso, and A. Pedace, “Lighting control systems: Factors affecting energy savings’ Evaluation,” Energy Procedia, vol. 78, pp. 2645–2650, Nov. 2015, doi: 10.1016/j.egypro.2015.11.336.
    [38] M. Miki, T. Hiroyasu, and K. Imazato, “Proposal for an intelligent lighting system, and verification of control method effectiveness,” in IEEE Conference on Cybernetics and Intelligent Systems, 2004., Singapore, 2005, vol. 1, pp. 520–525. doi: 10.1109/ICCIS.2004.1460469.
    [39] Y. Gao, Y. Lin, and Y. Sun, “A wireless sensor network based on the novel concept of an I-matrix to achieve high-precision lighting control,” Building and Environment, vol. 70, pp. 223–231, Dec. 2013, doi: 10.1016/j.buildenv.2013.08.011.
    [40] K. R. Wagiman, M. N. Abdullah, M. Y. Hassan, and N. H. M. Radzi, “A new optimal light sensor placement method of an indoor lighting control system for improving energy performance and visual comfort,” Journal of Building Engineering, vol. 30, p. 101295, Jul. 2020, doi: 10.1016/j.jobe.2020.101295.
    [41] D. Caicedo, S. Li, and A. Pandharipande, “Smart lighting control with workspace and ceiling sensors,” Lighting Research & Technology, vol. 49, no. 4, pp. 446–460, Jun. 2017, doi: 10.1177/1477153516629531.
    [42] S. Ranasinghe and R. Mistrick, “A study of photosensor configuration and performance in a daylighted classroom space,” Journal of the Illuminating Engineering Society, vol. 32, no. 2, pp. 3–20, Jul. 2003, doi: 10.1080/00994480.2003.10748412.
    [43] A.-S. Choi, K.-D. Song, and Y.-S. Kim, “The characteristics of photosensors and electronic dimming ballasts in daylight responsive dimming systems,” Building and Environment, vol. 40, no. 1, pp. 39–50, Jan. 2005, doi: 10.1016/j.buildenv.2004.07.014.
    [44] E. S. Lee, D. L. DiBartolomeo, and S. E. Selkowitz, “The effect of venetian blinds on daylight photoelectric control performance,” Journal of the Illuminating Engineering Society, vol. 28, no. 1, pp. 3–23, Jan. 1999, doi: 10.1080/00994480.1999.10748247.
    [45] M. Chiogna, R. Albatici, and A. Frattari, “Electric lighting at the workplace in offices: Efficiency improvement margins of automation systems,” Lighting Research & Technology, vol. 45, no. 5, pp. 550–567, Oct. 2013, doi: 10.1177/1477153512461372.
    [46] L. Doulos, A. Tsangrassoulis, and F. V. Topalis, “Multi-criteria decision analysis to select the optimum position and proper field of view of a photosensor,” Energy Conversion and Management, vol. 86, pp. 1069–1077, Oct. 2014, doi: 10.1016/j.enconman.2014.06.032.
    [47] “Lighting Controls For Education And Classrooms - flex7.” [Online]. Available: https://www.flex7.co.uk/lighting-controls-for-education/ (accessed Jul. 12, 2022).
    [48] S. Li, S.-C. Tan, S. Y. R. Hui, and C. K. Tse, “A review and classification of LED ballasts,” in 2013 IEEE Energy Conversion Congress and Exposition, Sep. 2013, pp. 3102–3109. doi: 10.1109/ECCE.2013.6647106.
    [49] L. Doulos, A. Tsangrassoulis, and F. Topalis, “Quantifying energy savings in daylight responsive systems: The role of dimming electronic ballasts,” Energy and Buildings, vol. 40, no. 1, pp. 36–50, Jan. 2008, doi: 10.1016/j.enbuild.2007.01.019.
    [50] D. H. W. Li, K. L. Cheung, S. L. Wong, and T. N. T. Lam, “An analysis of energy-efficient light fittings and lighting controls,” Applied Energy, vol. 87, no. 2, pp. 558–567, Feb. 2010, doi: 10.1016/j.apenergy.2009.07.002.
    [51] R. Delvaeye, W. Ryckaert, L. Stroobant, P. Hanselaer, R. Klein, and H. Breesch, “Analysis of energy savings of three daylight control systems in a school building by means of monitoring,” Energy and Buildings, vol. 127, pp. 969–979, Sep. 2016, doi: 10.1016/j.enbuild.2016.06.033.
    [52] “BH1750FVI Datasheet.pdf.” [Online]. Available: https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf (accessed Jul. 25, 2022).
    [53] “MQTT - The Standard for IoT Messaging.” [Online]. Available: https://mqtt.org/ (accessed Jul. 12, 2022).
    [54] K. R. Wagiman, M. N. Abdullah, M. Y. Hassan, N. H. Mohammad Radzi, A. H. Abu Bakar, and T. C. Kwang, “Lighting system control techniques in commercial buildings: Current trends and future directions,” Journal of Building Engineering, vol. 31, p. 101342, Sep. 2020, doi: 10.1016/j.jobe.2020.101342.
    [55] P. Drabek and J. O. Ogunleye, “Possibilities of using lighting simulation tools to predict the level of illumination on the workplace from electric lights,” MATEC Web of Conferences, vol. 210, p. 02032, 2018, doi: 10.1051/matecconf/201821002032.
    [56] R. A. Mangkuto, “Validation of DIALux 4.12 and DIALux evo 4.1 against the Analytical Test Cases of CIE 171:2006,” LEUKOS, vol. 12, no. 3, pp. 139–150, Jul. 2016, doi: 10.1080/15502724.2015.1061438.
    [57] “scipy.optimize.curve_fit — SciPy v1.8.1 Manual.” [Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html (accessed Jul. 14, 2022).
    [58] “scipy.interpolate.make_lsq_spline — SciPy v1.9.1 Manual.” [Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_lsq_spline.html (accessed Sep. 06, 2022).
    [59] “AEF0414 1WS-EVG Datasheet” [Online]. Available: http://www.lenneper.de/de/produkte/produktdetails/aef0414-1ws-evg/ (accessed Jul. 29, 2022).
    [60] L. McInnes, J. Healy, and S. Astels, “Hdbscan: Hierarchical density based clustering,” The Journal of Open Source Software, vol. 2, no. 11, p. 205, Mar. 2017, doi: 10.21105/joss.00205.
    [61] “Interior-point method” [Online]. Available: https://en.wikipedia.org/w/index.php?title=Interior-point_method&oldid=1069107991 (accessed Sep. 06, 2022).
    [62] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming, vol. 271. Cham: Springer International Publishing, 2014. doi: 10.1007/978-3-319-11008-0.
    [63] “Mixed-Integer Programming (MIP) - A Primer on the Basics,” [Online]. Available: https://www.gurobi.com/resource/mip-basics/ (accessed Jul. 25, 2022).
    [64] “3.1. Cross-validation: evaluating estimator performance,” [Online]. Available: https://scikit-learn/stable/modules/cross_validation.html (accessed Jul. 20, 2022).
    [65] M. A. Carskadon, C. Vieira, and C. Acebo, “Association between puberty and delayed phase preference,” Sleep, vol. 16, no. 3, pp. 258–262, Apr. 1993, doi: 10.1093/sleep/16.3.258.
    [66] J. C. Spilsbury, D. Drotar, C. L. Rosen, and S. Redline, “The cleveland adolescent sleepiness questionnaire,” Journal of Clinical Sleep Medicine, vol. 3, no. 6, pp. 603–612, Oct. 2007.
    [67] J.-S. Wang, C.-W. Lin, Y.-T. C. Yang, and Y.-J. Ho, “Walking pattern classification and walking distance estimation algorithms using gait phase information,” IEEE transactions on bio-medical engineering, vol. 59, no. 10, pp. 2884–2892, Oct. 2012, doi: 10.1109/TBME.2012.2212245.
    [68] S. Cohen, T. Kamarck, and R. Mermelstein, “A global measure of perceived stress,” Journal of Health and Social Behavior, vol. 24, no. 4, pp. 385–396, 1983, doi: 10.2307/2136404.
    [69] M. Fendrich, M. M. Weissman, and V. Warner, “Screening for depressive disorder in children and adolescents: Validating the center for epidemiologic studies depression scale for children,” American Journal of Epidemiology l, vol. 131, no. 3, pp. 538–551, Mar. 1990, doi: 10.1093/oxfordjournals.aje.a115529.
    [70] 雯林玉, 珠黃台, and 茹劉嘉, “課室學習專注力之研究-量表發展與分析應用,” 科學教育學刊, vol. 18, no. 2, pp. 107–129, Apr. 2010, doi: 10.6173/CJSE.2010.1802.02.
    [71] “WELL Standard v2,” [Online]. Available: https://v2.wellcertified.com/en/wellv2/light/feature/3 (accessed Sep. 04, 2022).
    [72] 杜成功(Cong Thanh Do), “動態複雜窗戶系統之日照性能分析.” 國立台灣大學學位論文, Jan. 01, 2021.
    [73] “Ameba ARDUINO: Getting Started with RTL8195 – Realtek IoT/Wi-Fi MCU Solutions.” [Online]. Available: https://www.amebaiot.com/zh/ameba-arduino-getting-started/ (accessed Sep. 23, 2022).
    [74] 楊雅婷, “發展可提升學習和工作表現之日夜節律調節策略暨場域實證研究(計畫編號:MOST108-2221-E006-219-MY3.” 科技部專題研究計畫第二年期中報告, 2021. [Online]. Available: https://www.grb.gov.tw/search/planDetail?id=13328187

    無法下載圖示 校內:2027-09-27公開
    校外:2027-09-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE