簡易檢索 / 詳目顯示

研究生: 陳家賢
Chen, Jia-Sian
論文名稱: 使用多重切換電感技術之壓電獵能介面電路
Piezoelectric Energy Harvester Interface Circuits Using Multi-Switched Inductor Technique
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: 獵能壓電多重切換電感
外文關鍵詞: Energy harvester, Piezoelectric, Multi-Switched Inductor
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電獵能技術可將振動能轉換為電能,可取代電池成為綠能環保之供應能源,其中主要影響轉換效率的為其介面電路。壓電獵能介面電路將壓電材料藉由振動能產生的交流電能轉換直流儲存,對壓電換能器的輸出功率影響極大。本論文利用TSMC 0.18-μm 1P6M 製程實現所設計之壓電獵能介面電路,提出多重切換電感(Multi-Switched Inductor)技術以降低電感電流極值因而提升介面電路轉換效率與獵取功率;並以自啟動技術實現免電池壓電系統,使獵能應用更為廣泛。整體獵能介面電路包含負電壓轉換(Negative Voltage Conversion)電路、切換電感(Switching Inductor)電路、啟動電路與多重切換控制邏輯電路。
    壓電獵能介面電路實驗量測結果,可於免電池操作,獵取能量100 μW至1 mW。並藉由多重切換之控制改善傳統切換電感電路損耗,峰值轉換效率為86.3%,整體面積為0.672 mm × 0.563 mm。

    In this thesis, TSMC 0.18-μm 1P6M process is applied to implement the design of the energy harvesting interface circuits. A multi-switched inductor technology is proposed to improve the conversion efficiency of the interface circuit power and the harvesting output power. The loss of the traditional switching inductor can be improved by the multi-switching control technologies to lower the maximal inductor current. Moreover, a self-startup is included to fulfill battery-free piezoelectric systems, so the energy harvesting technologies can be applied more widely. The overall energy harvesting interface circuit consists of a negative voltage conversion (NVC) circuit, a switching inductance circuit, a startup circuit, and a multiple switching control logic circuit.
    The measured results of the proposed piezoelectric interface circuits show that the energy harvester can scavenge power of 100 μW to 1 mW. The loss of the traditional switching inductor can be improved by the multi-switching control technologies. The peak conversion efficiency can be achieved to 86.3%. The overall chip area is 0.672 mm × 0.563 mm.

    第一章 緒論 1 1.1獵能研究背景 1 1.2 研究動機 2 1.3 研究貢獻 4 1.4 論文架構 4 第二章 壓電獵能 5 2.1 壓電電路模型[5] 5 2.2 整流電路 6 2.2.1 Diode-based 6 2.2.2 MOS-based 6 2.2.3 Active diode[8] 8 2.3切換式穩壓電路輸入阻抗[10] 10 2.4壓電獵能電路架構 12 2.4.1等效最佳負載[10] 13 2.4.2 最佳整流輸出電壓[13] 14 2.4.3 切換電感電路[16] 17 2.5 自啟動自供電系統[18] 19 第三章 多重切換電感式壓電獵能介面電路 21 3.1 系統架構 21 3.2 系統操作原理 22 3.3三模式切換分析 28 3.3.1 損耗分析 28 3.3.2 傳統切換電感 29 3.3.3 三模式切換電感 33 3.4 電路設計 36 3.4.1 負電壓轉換電路及主動式負電壓轉換電路 36 3.4.2 峰值偵測電路 37 3.4.3 零電壓偵測電路 39 3.4.4 模態選擇電路 40 3.4.5 關閉電路 42 3.4.6 啟動電路 42 3.4.7 閘極驅動電路 45 3.5 模擬結果 46 3.6 晶片佈局 53 第四章 量測結果 55 4.1 量測考量 55 4.2 量測結果 56 第五章 結論與未來展望 60 5.1 結論 60 5.2 未來展望 60 5.2.1 效能改進 60 5.2.2 高壓壓電獵能 61 5.2.3 混合獵能 61 參考文獻 63

    [1]Y. Qiu, C. V. Liempd, B. O. Veld, P. G. Blanken, and C. V. Hoof, “5μW-to-10 mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 118–119.
    [2]T. Le, J. Han, A. von Jouanne, K. Mayaram, and T. Fiez, “Piezoelectric micro-power generation interface circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1411–1420, Jun. 2006.
    [3]J. Kim and C. Kim, “A DC–DC boost converter with variation-tolerant MPP tracking technique and efficient ZCS circuit for thermoelectric energy harvesting applications,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3827–3833, Aug. 2013.
    [4]A. Chandrakasan, D. Daly, J. Kwong, and Y. Ramadass, “Next generation micro-power systems,” in Symp. VLSI Circuits Dig., Jun. 2008, pp. 2–5.
    [5]D. Kwon et al., “Harvesting ambient kinetic energy with switched-inductor converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 7, pp. 1551–1560, Jul. 2011.
    [6]S. Roundy, P. Wright, and J. Rabaey, Energy Scavenging for Wireless Sensor NetworksWith Special Focus on Vibrations. Boston, MA: Kluwer Academic, 2003.
    [7]G. K. Ottman et al., “Adaptive piezoelectric energy harvesting circuit for wireless remote power supply,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 669–676, Sep. 2002.
    [8]S. Guo and H. Lee, “An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796–1804, Jun. 2009.
    [9]C. Peters, J. Handwerker, D. Maurath, and Y. Manoli, “A sub-500 mV highly efficient active rectifier for energy harvesting applications,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, no. 7, pp.1542–1550, 2011.
    [10]M. Darmayuda, Y. Gao,M. T. Tan, S.-J. Cheng, Y. Zheng, M. Je, and C.-H. Heng, “A self-powered power conditioning IC for piezoelectric energy harvesting from short-duration vibrations,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 59, pp. 578–582, 2012.
    [11]B. Sahu and G. A. Rincon-Mora, “A low voltage, non-inverting, dynamic, synchronous buck-boost converter for portable applications,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443–452, Mar. 2004.
    [12]E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, “Buck–boost converter for sensorless power optimization of piezoelectric energy harvester,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2018–2025, Sep. 2007.
    [13]L. Chao, C.-Y. Tsui, and W.-H. Ki , “A batteryless vibration-based energy harvesting system for ultra low power ubiquitous applications,” in Proc. IEEE Int. Symp. Circuits and Systems, May 2007, pp. 1349–1352.
    [14]Y. Sun, N. H. Hieu, C.-J. Jeong, and S.-G. Lee, “An integrated high performance active rectifier for piezoelectric vibration energy harvesting systems,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 623–627, Feb.2012.
    [15]Y. Ramadass and A. Chandrakasan, “An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 189–204, Jan. 2010.
    [16]D. Kwon and G. A. Rincón-Mora, “A 2-μm BiCMOS rectifier-free AC–DC piezoelectric energy harvester-charger IC,” IEEE Trans. Biomed.Circuits Syst., vol. 4, no. 6, pp. 400–409, Dec. 2010.
    [17]T. Hehn, F. Hagedorn, D. Maurath, D. Marinkovic, I. Kuehne, A. Frey,and Y. Manoli, “A fully autonomous integrated interface circuit for piezoelectric harvesters,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2185–2198, Sep. 2012.
    [18]Y. Rao and D. Arnold, “An input-powered vibrational energy harvesting interface circuit with zero standby power,” IEEE Trans. Power Electronics, vol. PP, no. 99, p. 1, 2011.
    [19]D. Kwon and G. A. Rincón-Mora, “A single-inductor AC-DC piezoelectric energy-harvester/battery-charger IC converting ±(0.35 to 1.2 V) to (2.7 to 4.5 V),” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, vol. 53, pp. 494–495.
    [20]Y. Ramadass and A. Chandrakasan, “A batteryless thermoelectric energy-harvesting interface circuit with 35 mV startup voltage,” in 2010 IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb.2010, pp. 486–487.
    [21]P.-H. Chen,X.Zhang,K. Ishida, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “An 80 mV startup dual-mode boost converter by chargepumped pulse generator and threshold voltage tuned oscillator with hot carrier injection,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp.2554–2562, Nov. 2012.
    [22]Lam, Hylas YH, Wing-Hung Ki, and Dongsheng Ma. "Loop gain analysis and development of high-speed high-accuracy current sensors for switching converters." Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on. Vol. 5. IEEE, 2004.
    [23]Y. Gao et al., “An energy-autonomous piezoelectric energy harvester interface circuit with 0.3V startup voltage,” in IEEE A-SSCC Dig. Tech. Papers, Nov. 2013.
    [24]S. Stanzione, C. V. Liempd, R. V. Schaijk, Y. Naito, F. Yazicioglu, and C. V. Hoof, “A high voltage self-biased Integrated DC-DC buck converter with fully analog MPPT algorithm for electrostatic energy harvesters,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3002–3010, Dec. 2013.
    [25]Dongwon Kwon, and Gabriel Rincon-Mora. "A single-inductor 0.35 µm CMOS energy-investing piezoelectric harvester," IEEE J. Solid-State Circuits,vol.49, no. 12, pp. 2277 – 2291, Oct. 2014.
    [26]S. Stanzione, C. van Liempd, and C. Van Hoof, “Integrated asynchronous high-voltage DC-DC buck converter for energy harvesting applications,” Electron. Lett., vol. 49, no. 3, pp. 210–211, Jan. 2013.
    [27]M. Khorasani, M. Behnam, L. van den Berg, C. J. Backhouse, and D. G. Elliott, “High-voltage CMOS controller for microfluidics,” Trans. Biomed. Circuits Syst., vol. 3, no. 2, pp. 89–96, Apr. 2009.
    [28]S. Stanzione, C. van Liempd, R. van Schaijk, Y. Naito, R. F. Yazicioglu, and C. Van Hoof, “A self-biased 5-to-60 V input voltage and 25-to-1600 W integrated DC-DC buck converter with fully analog MPPT algorithm reaching up to 88% end-to-end efficiency,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 74–75.
    [29]Y. Nakase et al., “0.5 V start-up 87% efficiency 0.75 mm2 on-chip feed-forward single-inductor dual-output (SIDO) boost DC–DC converter for battery and solar cell operation sensor network micro-computer integration,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1933–1942, Aug. 2013.
    [30]E. Carlson, K. Stunz, and B. Otis, “20 mV input boost converter for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 45, pp. 741–750, Apr. 2010.
    [31]S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sep. 2012.
    [32]D. Ma, W. H. Ki, C. Y. Tsui, and P. K. T. Mok, “Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89–100, Jan. 2003.

    無法下載圖示 校內:2020-09-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE