| 研究生: |
羅文懋 Lo, Wen-Mao |
|---|---|
| 論文名稱: |
映射函數之壓縮於樣本學習基礎的超解析演算法 Data Compression of Mapping Function in Example Learning-based Super Resolution |
| 指導教授: |
賴源泰
Lai, yen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 局部多梯度模式 、映射矩陣 、學習基礎 、超解析 |
| 外文關鍵詞: | LMGP, mapping function, Example learning-based, super-resolution |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單張影像超解析是一個能將模糊的低解析度影像轉為清楚高解析的方法,是一個有效將低品質的訊號源轉為高清的方法,像是在網路鏡頭,手機或監視系統等。在眾多超解析演算法當中,以學習基礎的方法還原較為快速,且可以藉由資料庫訓練的方式取得圖片細節,使用線性回歸的方式找出轉換圖片所需的映射函數,但此函數所需的儲存空間較為龐大。
因此本篇論文主要探討的主題是映射矩陣的大小壓縮,以改善超解析在行動裝置上的實用性,利用演算法中局部多梯度模式的特性,分類出每個補塊的頻率高低,而給予各種映射矩陣不同的量化程度,在維持原本圖片品質下達到壓縮的效果。
The objective of single image super-resolution (SR) is to restore a visually pleasing high-resolution (HR) image from a single low-resolution (LR) input. SR reconstruction is an effective signal recovery technique that produces high quality images from low-cost imaging systems (e.g., webcams or mobile phones) and limited environmental conditions (e.g., security surveillance or remote sensing imaging). There are many method nowadays, and the example-learning-based approach is faster than others and restore the detail by using training dataset. It uses linear regression to find the mapping functions for transforming images, but the problem is that storage requirement is large.
In this thesis, we focus on the compression of mapping function to improve applicability of mobile device. This work presents local multi-gradient level pattern (LMGP) to describe the patches, and mapping function can be classified to different image frequency. This thesis compresses storage space remaining original image quality by giving different quantization to values in mapping function.
[1] C.-Y. Yang and M.-H. Yang, “Fast direct super-resolution by simple functions,” in Proc. IEEE Int. Conf. Comput. Vis. Dec. 2013, pp. 561–568.
[2] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009.
[3] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR, 2004.
[4] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-resolution.
IEEE Computer Graphics and Applications, pages 56–65,
2002.
[5] H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embedding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Jun/Jul. 2004, pp. 275–282.
[6] K. I. Kim and Y. Kwon, “Single-image super-resolution using sparse regression and natural image prior,” IEEE Trans. Pattern Anal. Mach. Intell. vol. 32, no. 6, pp. 1127–1133, Jun. 2010.
[7] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.
[8] K. Zhang, D. Tao, X. Gao, X. Li, and Z. Xiong, “Learning multiple linear mappings for efficient single image super-resolution,” IEEE Trans. Image Process. vol. 24, no. 3, pp. 846–861, Mar. 2015.
[9] C. W. Chen, F. K. Hsu, D. W. Yang, J. Wang, and M. D. Shieh, “Fast model searching and combining for example learning-based super-resolution,” in Proc. IEEE Int. Symp. Circuits Syst. May. 2016.
[10] T. Ojala, M. Pietikainen and T. Maenpaa, "Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, July 2002.
[11] Hamid Rahim sheikh and Alan Conrad Bovik, “An Information Fidelity Criterion for Image Quality Assessment Using Natural Scene Statistics, “IEEE Trans. Image Processing.” .VOL. 14, NO. 12, pp.2117-2128. ,December 2005
校內:立即公開