簡易檢索 / 詳目顯示

研究生: 林柏均
Lin, Po-Chun
論文名稱: 氧化鎳覆蓋層於氧化矽鋅錫薄膜電晶體與場效應二極體電性及紫外光感測性能改善之研究
Effects of NiO Capping Layer on Improving Electrical Characteristics and Ultraviolet Light Sensing Performance of SZTO Thin Film Transistors and Field Effect Diodes
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 175
中文關鍵詞: 氧化鎳覆蓋層氧化矽鋅錫薄膜電晶體場效應二極體紫外光感測器
外文關鍵詞: NiO capping layer, SZTO, thin film transistors (TFTs), field effect diodes (FEDs), photodetectors
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract VIII 誌謝 XV 目錄 XVI 表目錄 XX 圖目錄 XXIII 第1章 緒論 1 1-1 紫外光感測器之應用與發展 1 1-2 SZTO通道材料特性介紹 4 1-3 應用於降低通道漏電流之氧化鎳覆蓋層(NiO CL)材料特性介紹 10 1-4 場效應二極體(FED)基本介紹與發展 13 1-5 研究動機 14 第2章 UV-PDs機制與相關理論 18 2-1 UV-PDs簡介和原理 18 2-2 pn異質接面光二極體之操作原理及參數萃取 20 2-2-1 pn異質接面光二極體照光操作原理 20 2-2-2 pn異質接面相關參數推導 24 2-3 薄膜電晶體(TFT)與場效應二極體(FED)之相關原理及參數萃取 28 2-3-1 TFT與FED之操作原理 28 2-3-2 TFT與FED之全空乏理論 37 2-3-3 TFT與FED照光原理及感光參數介紹 38 2-3-4 TFT與FED元件相關電性參數介紹 41 2-4 覆蓋層(CL)於TFT及FED元件光電特性之影響探討 48 2-5 TFT與FED之閘極漏電流機制 51 第3章 pn HJ、TFT及FED UV-PDs之製程與光電特性量測方法 55 3-1 射頻濺鍍與電子束蒸鍍製程簡介 55 3-1-1 射頻濺鍍系統簡介 55 3-1-2 電子束蒸鍍系統簡介 56 3-2 p-NiO/n-SZTO異質結構UV-PDs製備流程 57 3-3 具NiO CL之SZTO TFT與FED UV-PDs製備流程 61 3-4 元件特性量測系統與方式介紹 67 第4章 p-NiO/n-SZTO異質結構UV-PDs之薄膜特性與光電特性分析 70 4-1 NiO與SZTO薄膜之材料特性分析 70 4-1-1 X射線繞射儀(X-ray diffraction, XRD)分析 70 4-1-2 霍爾量測(Hall measurement) 73 4-1-3 紫外光/可見光分光光譜儀(UV/VIS/NIR spectrometers)薄膜穿透率分析 74 4-1-4 紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, UPS)薄膜分析 78 4-1-5 Ti/n-SZTO及Ti/p-NiO蕭基接面之C-V量測與相對介電係數分析 81 4-2 金半歐姆接觸特性探討 82 4-2-1 環形傳輸線模型(Circular transfer length method, CTLM)介紹 83 4-2-2 SZTO與NiO薄膜之特徵接觸電阻分析 85 第5章 沉積NiO CL前後之SZTO TFT 與FED UV-PDs光電特性研究 88 5-1 SZTO TFT與FED UV-PDs之電性及UV光感測特性分析 89 5-1-1 SZTO TFTs之電性與感光特性分析 89 5-1-2 SZTO FEDs之電性與感光特性分析 93 5-2 p-NiO/n-SZTO HJ UV-PDs之電性及UV光感測特性分析 99 5-3 具NiO CL之SZTO TFT與FED UV-PDs電性及UV光感測特性分析 105 5-3-1 沉積NiO CL之SZTO TFTs電性與感光特性分析 105 5-3-2 沉積NiO CL之SZTO FEDs電性與光學特性分析 118 5-4 持續光電導(PPC)效應探討及改善 134 5-5 元件之閘極漏電流分析及可靠度測試 138 5-5-1 閘極漏電流分析 139 5-5-2 室溫下之閘極偏壓應力測試 141 第6章 結論與研究建議 154 6-1 結論 154 6-2 未來研究方向與建議 162 參考資料 165

    [1] Z. Assefa, M. Garmyn, R. Bouillon, W. Merlevede, J. R. Vandenheede, and P. Agostinis, "Differential stimulation of ERK and JNK activities by ultraviolet B irradiation and epidermal growth factor in human keratinocytes," J. Invest. Dermatol. 108(6), 886-891 (1997).
    [2] S. Banerjee, E. G. Hoch, P. D. Kaplan and E. L. P. Dumont, "A comparative study of wearable ultraviolet radiometers," 2017 IEEE Life Sci. Conf. (LSC), 9-12 (2017).
    [3] R. Copperwhite, C. McDonagh, and S. O'Driscoll, "A Camera Phone-Based UV-Dosimeter for Monitoring the Solar Disinfection (SODIS) of Water," IEEE Sens. J. 12(5), 1425-1426 (2012).
    [4] P. Cheong, K.-F. Chang, Y.-H. Lai, S.-K. Ho, I.-K. Sou, and K.-W. Tam, "A ZigBee-Based Wireless Sensor Network Node for Ultraviolet Detection of Flame," IEEE Trans. Ind. Electron. 58(11), 5271-5277 (2011).
    [5] Hiroyuki Yamada, Noriyuki Miura, Masao Okihara and Kunio Hinohara, "A UV sensor IC based on SOI technology for UV care application," 2008 SICE Annual Conference, 317-320 (2008).
    [6] S. A. Hasan, H. Torun, D. Gibson, Q. Wu, M. D. Cooke and Y. Fu, "Flexible UV sensor based on nanostructured ZnO thin film SAW device," 2019 IEEE Jordan Int. Joint Conf. on Electr. Eng. and Inf. Technol. (JEEIT), 85-90 (2019).
    [7] H. Jia, X. Li, Y. Fan, C. Ding, L. Pan, X. Feng, X. Liu, J. Hu, J. Chen, L. Gao, Z. Chen, and J. Qiu, "Highly Efficient Broadband Solar‐Blind UV Photodetector Based on Gd2O3:Eu3+–PMMA Composite Film," Adv. Mater. Interfaces 7(14), 2000570 (2020).
    [8] J. Huang, B. Li, Y. Hu, X. Zhou, Z. Zhang, Y. Ma, K. Tang, L. Wang, and Y. Lu, "Transparent p-NiO/n-ZnO heterojunction ultraviolet photodetectors prepared on flexible substrates," Surf. Coat. Technol. 362, 57-61 (2019).
    [9] N. Chao, J. Ruo Lian, J. Xiao Li, X. Zi Li, L. Bin, H. Ping, Z. Rong, and Z. You Dou, "Design and Fabrication of AlGaN-Based Resonant-Cavity-Enhanced p-i-n UV PDs," IEEE J. Quantum Electron. 45(6), 575-578 (2009).
    [10] J. A. Padovese, L. S. Yojo, R. C. Rangel, K. R. A. Sasaki and J. A. Martino, "Back Enhanced SOI MOSFET as UV Light Sensor," 2018 33rd Symp. Microelectron. Technol. Devices (SBMicro), 1-4 (2018).
    [11] W.-T. Chen, and H.-W. Zan, "High-Performance Light-Erasable Memory and Real-Time Ultraviolet Detector Based on Unannealed Indium–Gallium–Zinc–Oxide Thin-Film Transistor," IEEE Electron Device Lett. 33(1), 77-79 (2012).
    [12] Y. Berencen, S. Prucnal, F. Liu, I. Skorupa, R. Hubner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, and W. Skorupa, "Room-temperature short-wavelength infrared Si photodetector," Sci. Rep. 7, 43688 (2017).
    [13] L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Lu, J. Li, and L. Zhao, "High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN," Nanoscale 9(24), 8142-8148 (2017).
    [14] F.-R. Juang, Y.-K. Fang, Y.-T. Chiang, T.-H. Chou, and C.-I. Lin, "A High-Performance n-i-p SiCN Homojunction for Low-Cost and High-Temperature Ultraviolet Detecting Applications," IEEE Sens. J. 11(1), 150-154 (2011).
    [15] Y. Luo, B. Yin, H. Zhang, Y. Qiu, J. Lei, Y. Chang, Y. Zhao, J. Ji, and L. Hu, "Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes," J. Mater. Sci.: Mater. Electron. 27(3), 2342-2348 (2015).
    [16] P. D. Sahare, S. Kumar, S. Kumar, and F. Singh, "n-ZnO/p-Si heterojunction nanodiodes based sensor for monitoring UV radiation," Sens. Actuators, A. 279, 351-360 (2018).
    [17] L. S. Vikas, K. A. Vanaja, P. P. Subha, and M. K. Jayaraj, "Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction," Sens. Actuators, A 242, 116-122 (2016).
    [18] J. Yu, K. Javaid, L. Liang, W. Wu, Y. Liang, A. Song, H. Zhang, W. Shi, T. C. Chang, and H. Cao, “High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p-n Heterojunction,” ACS Appl. Mater. Interfaces 10(9), 8102-8109 (2018).
    [19] https://www.propii.com.tw/cate-157920.htm.
    [20] J. Y. Choi, K. Heo, K. S. Cho, S. W. Hwang, S. Kim, and S. Y. Lee, "Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration," Sci. Rep. 6, 36504 (2016).
    [21] B. H. Lee, K. S. Cho, D. Y. Lee, A. Sohn, J. Y. Lee, H. Choo, S. Park, S. W. Kim, S. Kim, and S. Y. Lee, "Investigation on energy bandgap states of amorphous SiZnSnO thin films," Sci. Rep. 9(1), 19246 (2019).
    [22] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Appl. Phys. Lett. 86(1), 013503 (2005).
    [23] J. Y. Choi, S. Kim, D. H. Kim, and S. Y. Lee, "Role of metal capping layer on highly enhanced electrical performance of In-free Si–Zn–Sn–O thin film transistor," Thin Solid Films 594, 293-298 (2015).
    [24] M. D. H. Chowdhury, P. Migliorato, and J. Jang, "Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors," Appl. Phys. Lett. 97(17), 173506 (2010).
    [25] K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U. I. Chung, and J.-H. Lee, "Instability in threshold voltage and subthreshold behavior in Hf–In–Zn–O thin film transistors induced by bias-and light-stress," Appl. Phys. Lett. 97(11), 113504 (2010).
    [26] C. Wu, X. Li, J. Lu, Z. Ye, J. Zhang, T. Zhou, R. Sun, L. Chen, B. Lu, and X. Pan, "Characterization of amorphous Si-Zn-Sn-O thin films and applications in thin-film transistors," Appl. Phys. Lett. 103(8), 082109 (2013).
    [27] B. H. Lee, S. Y. Hong, D. H. Kim, S. Kim, H. I. Kwon, and S. Y. Lee, "Investigation on trap density depending on Si ratio in amorphous SiZnSnO thin-film transistors," Phys. B: Condens. Matter 574, 311629-1-311629-6 (2019).
    [28] J. Y. Hwang, and S. Y. Lee, "Amorphous Si–Zn–Sn–O Thin Film Transistor with In–Si–O as Transparent Conducting Electrodes," Trans. Electr. Electron. Mater. 20, 371-374 (2019).
    [29] B. H. Lee, and S. Y. Lee, "Influence of Channel Layer Thickness on the Instability of Amorphous SiZnSnO Thin Film Transistors Under Negative Bias Temperature Stress," Phys. Status Solidi. 215, 1700698-1-1700698-7 (2018).
    [30] J. M. Byun, and S. Y. Lee, "Effect of Annealing Temperature on Enhancement of Electrical Performance and Stability of Amorphous SiZnSnO Thin Film Transistors," Trans. Electr. Electron. Mater. 19, 47-51 (2018).
    [31] S. Han, and S. Y. Lee, "Full swing depletion-load inverter with amorphous SiZnSnO thin film transistors," Phys. Status Solidi. 214(2), 1600469-1-1600469-5 (2017).
    [32] J. Y. Choi, K. Heo, K. S. Cho, S. W. Hwang, S. Kim, and S. Y. Lee, "Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration," Sci. Rep. 6, 36504-1-36504-8 (2016).
    [33] C. N. Lin, Enhanced Electrical Performance and Reliability of Ti-SZTO Thin-Film Transistors with Hf1-xSixO2 Gate Dielectrics Using Co-sputtering Technique, Institute of Microelectronics, Dept. of Electrical Engineering, National Cheng Kung University, 2020.
    [34] https://zh.wikipedia.org/wiki/%E4%B8%80%E6%B0%A7%E5%8C%96
    %E9%95%8D.
    [35] P. Chou et al., "On the Ammonia Gas Sensing Performance of a RF Sputtered NiO Thin-Film Sensor," IEEE Sens. J. 15(7), 3711-3715 (2015).
    [36] S. Yan et al., "Analysis of non-ideal effects and electrochemical impedance spectroscopy of arrayed flexible NiO-based pH sensor," 2016 IEEE Asia Pac. Conf. Circuits Syst. (APCCAS), 670-673 (2016).
    [37] H. Miyazaki, N. Eimori, T. Matsuura, and T. Ota, "Improvement in Photochromic Property of Nickel Oxide-Based Photochromic Composite Films by Cobalt Addition," J. Mater. Res. 7(1), 1927-0585 (2017).
    [38] Y. Luo, Z. Dong, Y. Chen, Y. Zhang, Y. Lu, T. Xia, L. Wang, S. Li, W. Zhang, W. Xiang, C. Shan, and H. Guo, "Self-powered NiO@ZnO-nanowire-heterojunction ultraviolet micro-photodetectors," Opt. Mater. Express 9(7), 2775-2784 (2019).
    [39] R. T. Mouchou, T. C. Jen, O. T. Laseinde, and K. O. Ukoba, "Numerical simulation and optimization of p-NiO/n-TiO2 solar cell system using SCAPS," Mater. Today: Proc. 38, 835-841 (2021).
    [40] L. T. Hoa, H. N. Tien, and S. H. Hur, "A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process," Sens. Actuators, A 207, 20-24 (2014).
    [41] https://www.webelements.com/compounds/nickel/nickel_oxide.html.
    [42] K. O. Ukoba, A. C. Eloka-Eboka, and F. L. Inambao, "Review of nanostructured NiO thin film deposition using the spray pyrolysis technique," Renew. Sustain. Energy Rev. 82, 2900-2915 (2018).
    [43] B. Razavi, "Design of Analog CMOS Integrated Circuits, " 2nd ed.
    [44] S. H. Cho, S. W. Kim, W. S. Cheong, C. W. Byun, C.-S. Hwang, K. I. Cho, and B. S. Bae, "Oxide Thin Film Transistor Circuits for Transparent RFID Applications, " IEICE Trans. Electron. 93(10), 1504-1510 (2010).
    [45] B. Tiwari, P. G. Bahubalindruni, A. Santa, J. Martins, P. Mittal, J. Goes, R. Martins, E. Fortunato, and P. Barquinha, "Oxide TFT Rectifiers on Flexible Substrates Operating at NFC Frequency Range," IEEE J. Electron Devices Soc. 7, 329-334 (2019).
    [46] I. Soga, A. Komuro, and O. Tsuboi, "Rectifying characteristics of thin film self-switching devices with ZnO deposited by atomic layer deposition," Electron. Lett. 48(15), 914-916 (2012).
    [47] Y. Zhang, Z. Mei, S. Cui, H. Liang, Y. Liu, and X. Du, "Flexible Transparent Field-Effect Diodes Fabricated at Low-Temperature with All-Oxide Materials," Adv. Electron. Mater. 2(5), 1500486 (2016).
    [48] M. K. Hota, Q. Jiang, Z. Wang, Z. L. Wang, K. N. Salama, and H. N. Alshareef, "Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for On-Chip Energy Storage," Adv Mater. 31(25), 1807450 (2019).
    [49] Z. Wang, F. H. Alshammari, H. Omran, M. K. Hota, H. A. Al‐Jawhari, K. N. Salama, and H. N. Alshareef, "All‐Oxide Thin Film Transistors and Rectifiers Enabling On‐Chip Capacitive Energy Storage," Adv. Electron. Mater. 5(12), 1900531 (2019).
    [50] S. Yasuno, T. Kugimiya, S. Morita, A. Miki, F. Ojima, and S. Sumie, "Correlation of photoconductivity response of amorphous In–Ga–Zn–O films with transistor performance using microwave photoconductivity decay method," Appl. Phys. Lett. 98(10), 102107 (2011).
    [51] M. Y. Su, S. J. Wang, R. M. Ko, "The use of a patterned NiO capping layer to improve photoresponsivity of ultraviolet photodetectors based on IGZO Field Effect Diodes," 2020 Int. Conf. on SSDM (2020).
    [52] H. Yoo, W. G. Kim, B. H. Kang, H. T. Kim, J. W. Park, D. H. Choi, T. S. Kim, J. H. Lim, and H. J. Kim, "High Photosensitive Indium-Gallium-Zinc Oxide Thin-Film Phototransistor with a Selenium Capping Layer for Visible-Light Detection," ACS Appl. Mater. Interfaces 12(9), 10673-10680 (2020).
    [53] N. M. Hosny, "Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route," Polyhedron 30(3), 470-476 (2011).
    [54] X. Wang, X. Li, X. Sun, F. Li, Q. Liu, Q. Wang, and D. He, "Nanostructured NiO electrode for high rate Li-ion batteries," J. Mater. Chem. 21(11), 3571-3573 (2011).
    [55] R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, and M. Menon, "Defect-induced optical absorption in the visible range in ZnO nanowires," Phys. Rev. B 80(19), 195314 (2009).
    [56] A. Bidiville, T. Matsui, H. Sai, and K. Matsubara, "Role of the Fermi level in the formation of electronic band-tails and mid-gap states of hydrogenated amorphous silicon in thin-film solar cells," J. Appl. Phys. 122(9), 093101 (2017).
    [57] L. Li, Y. Ryu, H. W. White, and P. Yu, "Characterization of ZnO UV photoconductors on the 6H-SiC substrate," Proc. SPIE 7603, 76031O (2010).
    [58] L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J. L. Liu, "Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection," Appl. Phys. Lett. 88, 092103 (2006).
    [59] K. Wang, Y. Vygranenko, and A. Nathan, "ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study," J. Appl. Phys. 101, 114508 (2007).
    [60] M. Hintikka and J. Kostamovaara, "Time Domain Characterization of Avalanche Photo Detectors for Sub-ns Optical Pulses," 2015 IEEE Int. Instrum. Meas. Technol. Conf. (I2MTC) Proc., 2015-2019 (2015).
    [61] H. Lu, X. Zhou, T. Liang, L. Zhang, and S. Zhang, "Oxide Thin-Film Transistors With IMO and IGZO Stacked Active Layers for UV Detection," IEEE J. Electron Devices Soc. 5(6), 504-508 (2017).
    [62] T.-Y. Tiong, C.-F. Dee, A. A. Hamzah, B. T. Goh, Y.-Y. Wong, L. Ooi, B. Y. Majlis, M. M. Salleh, and I. Ahmad, "A rapid responding ultraviolet sensor based on multi-parallel aligned ZnO nanowires field effect transistor," Sens. Actuators, A 260, 139-145 (2017).
    [63] O. Katz, G. Bahir, and J. Salzman, "Persistent photocurrent and suface trapping in GaN Schottky ultraviolet detectors," Appl. Phys. Lett. 84, 4092 (2004).
    [64] L. Anderson., "Germanium-Gallium Arsenide Heterojunctions," IBM J. Res. Dev. 4, 283 (1960).
    [65] J. Y. Choi, K. Heo, K. S. Cho, S. W. Hwang, S. Kim, and S. Y. Lee, "Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration," Sci. Rep. 6, 36504-1-36504-8 (2016).
    [66] S. Jun, C. Jo, H. Bae, H. Choi, D. H. Kim, and D. M. Kim, "Unified Subthreshold Coupling Factor Technique for Surface Potential and Subgap Density-of-States in Amorphous Thin Film Transistors," IEEE Electron Device Lett. 34(5), 641-643 (2013).
    [67] Y. C. Cheng, and E. A. Sullivan, "Effect of Coulomb scattering on silicon surface mobility," J. Appl. Phys. 45(1), 187-192 (1974).
    [68] C. S. Chiang, S. Martin, J. Kanicki, Y. Ugai, T. Yukawa, and S. Takeuchi, "Top-Gate Staggered Amorphous Silicon Thin-Film Transistors: Series Resistance and Nitride Thickness Effects," 1998 Jpn. J. Appl. Phys. 37(11), 5914-5920 (1998).
    [69] S. Park, E. N. Cho, and I. Yun, "Investigation on the relationship between channel resistance and subgap density of states of amorphous InGaZnO thin film transistors," Solid State Electron, 75, 93-96 (2012).
    [70] B. H. Lee, A. Sohn, S. Kim, and S. Y. Lee, "Mechanism of carrier controllability with metal capping layer on amorphous oxide SiZnSnO semiconductor," Sci. Rep. 9(1), 886 (2019).
    [71] Y.-C. Yeo, T.-J. King, and C. Hu, "Direct tunneling leakage current and scalability of alternative gate dielectrics," Appl. Phys. Lett. 81(11), 2091-2093 (2002).
    [72] K. F. Schuegraf, and C. Hu, "Metal‐oxide‐semiconductor field‐effect‐transistor substrate current during Fowler–Nordheim tunneling stress and silicon dioxide reliability," J. Appl. Phys. 76(6), 3695-3700 (1994).
    [73] M. P. Houng, Y. H. Wang, and W. J. Chang, "Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model," J. Appl. Phys. 86(3), 1488-1491 (1999).
    [74] T. Wang, T. E. Chang, and C. Huang, "Interface Trap Induced Thermionic and Field Emission Current in Off-State MOSFET's," Proc. 1994 IEEE Int. Electron Devices Meet. 94, 161-164 (1994).
    [75] O. Mitrofanov, and M. Manfra, "Poole-Frenkel electron emission from the traps in AlGaN/GaN transistors," J. Appl. Phys. 95(11), 6414-6419 (2004).
    [76] S.-M. Youn, M.-J. Park, J. H. Kim, and C. Jeong, "Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer," J. Alloys Compd. 836, 154803 (2020).
    [77] T. G. Mayerhofer, S. Pahlow, and J. Popp, "The Bouguer-Beer-Lambert Law: Shining Light on the Obscure," Chemphyschem 21(18), 2029-2046 (2020).
    [78] B. Ofuonye, J. Lee, M. Yan, C. Sun, J.-M. Zuo, and I. Adesida, "Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures," Semicond. Sci. Technol. 29(9), 095005 (2014).
    [79] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, "Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices," Appl. Phys. Lett. 83(9), 1875-1877 (2003).
    [80] Y. G. Chen, M. Ogura, S. Yamasaki, and H. Okushi, "Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model," Diam. Relat. Mater. 13(11-12), 2121-2124 (2004).
    [81] N. Sharma, "Optical band-gap and associated Urbach energy tails in defected AlN thin films grown by ion beam sputter deposition: Effect of assisted ion energy," Adv. Mater. Proc. 2(5), 342-346 (2017).
    [82] S. Singh, and Y. N. Mohapatra, "Persistent photocurrent (PPC) in solution-processed organic thin film transistors: Mechanisms of gate voltage control," J. Appl. Phys. 120(4), 045501 (2016).
    [83] M. Y. Su, The use of a Patterned NiO Capping Layer to Improve photoresponsivity of Ultraviolet Photodetectors Based on IGZO Field Effect Diodes, Institute of Microelectronics, Dept. of Electrical Engineering, National Cheng Kung University, 2021.
    [84] E. Chong, I. Kang, C. H. Park, and S. Y. Lee, "First-principle study of amorphous SiZnSnO thin-film transistor with excellent stability," Thin Solid Films 534, 609-613 (2013).
    [85] M. G. Yun, S. H. Kim, C. H. Ahn, S. W. Cho, and H. K. Cho, "Effects of channel thickness on electrical properties and stability of zinc tin oxide thin-film transistors," J. Phys. D: Appl. Phys. 46(47), 475106 (2013).
    [86] D. Y. Kim, J. Ryu, J. Manders, J. Lee, and F. So, "Air-Stable, Solution-Processed Oxide p-n Heterojunction Ultraviolet Photodetector," ACS Appl. Mater. Interfaces 6, 1370-1374 (2014).
    [87] D.-B. Ruan, P.-T. Liu, Y.-H. Chen, Y.-C. Chiu, T.-C. Chien, M.-C. Yu et al., "Photoresponsivity Enhancement and Extension of the Detection Spectrum for Amorphous Oxide Semiconductor Based Sensors," Adv. Electron. Mater. 5(3), 1800824 (2019).
    [88] I. Hwang, J. Kim, M. Lee, M.-W. Lee, H.-J. Kim, H.-I. Kwon et al., "Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors," Nanoscale 9, 16711-16721 (2017).
    [89] W.-L. Huang, M.-H. Hsu, S.-P. Chang, S.-J. Chang, and Y.-Z. Chiou, "Indium Gallium Oxide Thin Film Transistor for Two-Stage UV Sensor Application," ECS J. Solid State Sci. Technol. 8(7), 3140-3143 (2019).
    [90] W. L. Huang, C.-C. Yang, S.-P. Chang, and S.-J. Chang, "Photoresponses of Zinc Tin Oxide Thin -Film Transistor," J. Nanosci. Nanotechnol. 20(3), 1704-1708 (2020).

    無法下載圖示 校內:2026-10-25公開
    校外:2026-10-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE