| 研究生: |
柯志威 Ko, Chih-Wei |
|---|---|
| 論文名稱: |
探討鈷錯合物催化碳-碳鍵形成的反應:
合成與應用純鏡像之吡咯啶衍生物 Cobalt-Catalyzed Carbon−Carbon Bond Formation: Synthesis and Applications of Enantiopure Pyrrolidine Derivatives |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 鈷 、鈀 、吡咯啶 、娃兒藤生物鹼 |
| 外文關鍵詞: | Cobalt, Palladium, Pyrrolidine, Tylophorine |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在鈷金屬錯合物與四甲基乙二銨的催化下,可使 (S)-2-碘甲基吡咯啶上的碘原子和芳香族或炔的格里納試劑進行置換,並且可得到不錯的耦合產物之產率。此反應條件對於吡咯烷上的立體結構不會有所影響。
鈷金屬催化劑、四甲基乙二銨、格里納試劑及溫度於此反應中均扮演關鍵的角色。根據調整後的最佳反應條件,十餘種吡咯啶衍生物已被製備,產率為7594%。
此耦合產物為菲并吲哚啶生物鹼之重要骨架結構,由此反應所製備之產物(S)-2-(3-三甲基矽基-2-丙炔)吡咯啶和2,2'-二碘-4,4’,5,5’-四甲氧基聯苯,利用鈀金屬催化進行[4+2]環化加成反應,可得不錯產率之去矽烷基菲化合物,此化合物可經由Pictet-Spengler 環化反應,合成出比天然物(-)-(R)-娃兒藤生物鹼還具有更強抗癌作用的(+)-(S)-娃兒藤生物鹼。
In the presence of cobalt catalysts and TMEDA, the iodine atom in (S)-2-(iodomethyl)pyrrolidines was replaced by an aryl or an alkynyl group from the corresponding Grignard reagent, and the coupling products were obtained in good to excellent yields. The scope and limitations of this protocol were examined. The stereochemistry of the pyrrolidines was unaffected by the reaction conditions.
Systematic studies of the reaction conditions revealed that cobalt catalyst, TMEDA, Grignard reagent and temperature all play key roles. The reaction conditions have been optimized. Based on our optimized reaction conditions, several pyrrolidine derivatives have been prepared. (16 examples, 75−94%yields).
The coupling products are important building blocks of phenanthroindolizidine alkaloids. Palladium-catalyzed formal [4+2] cycloaddition of 2,2'-diiodobiphenyl with the thus-generated (S)- 2-(3-trimethylsilyl-2-propynyl)pyrrolidine gave a good yield of the desilylated phenanthrene, which was then converted into unnatural (+)-(S)-tylophorine by the Pictet-Spengler cyclization.
1 a) N. Dahlin, A. Bogevig, H. Adolfsson, Adv. Synth. Catal. 2004, 346, 1101; b) T. K. Jones, J. J. Mohan, L. C. Xavier, T. J. Blacklock, D. J. Mathre, P. Sohar, E. T. T. Jones, R. A. Reamer, F. E. Roberts, E. J. J. Grabowski, J. Org. Chem. 1991, 56, 763.
2 a) R. Lazny, A. Nodzewska, Chem. Rev. 2010, 110, 1386; b) D. Enders, L. Wortmann, R. Peters, Acc. Chem. Res. 2000, 33, 157
3 a) A. Ting, S. E. Schaus, Eur. J. Org. Chem. 2007, 5797; b) S. Sulzer-Mossé, A. Alexakis, Chem. Commun. 2007, 3123.
4 a) A. D. Borthwick, Med. Res. Rev. 2005, 25, 427.
5 a) J. P. Michael, Nat. Prod. Rep. 2005, 22, 603; b) J. P. Michael, Nat. Prod. Rep. 2004, 21, 625
6 a) S. M. Weinreb, Nat. Prod. Rep. 2009, 26, 758
7 a) S. Kim, J. Lee, T. Lee, H.-G. Park, D. Kim, Org. Lett. 2003, 5, 2703; b) S. Kim, T. Lee, E. Lee, J. Lee, G.-J. Fan, S. K. Lee, D. Kim, J. Org. Chem. 2004, 69, 3144.
8 a) S. Hong, S. Tian, M. V. Metz, T. J. Marks, J. Am. Chem. Soc. 2003, 125, 14768; b) W. Zeng, S. R. Chemler, J. Org. Chem. 2008, 73, 6045; c) W. Zeng, S. R. Chemler, J. Am. Chem. Soc. 2007, 129, 12948.
9 a) D. Stead, P. O'Brien, A. Sanderson, Org. Lett. 2008, 10, 1409
10 a) A. Hameed, A. J. Blake, C. J. Hayes, J. Org. Chem. 2008, 73, 8045; b) N. T. Patil, N. K. Pahadi, Y. Yamamoto, Tetrahedron Lett. 2005, 46, 2101
11 a) S. Zhu, Q. Zhang, C. Gudise, L. Wei, E. Smith, Y. Zeng, Bioorg. Med. Chem. 2009, 17, 4496; b) S. H. Park, H. J. Kang, S. Ko, S. Park, S. Chang, Tetrahedron Asym. 2001, 12, 2621
12 a) T. Hjelmgaard, D. Tanner, Org. Biomol. Chem. 2006, 4, 1796 b) Fürstner, J. W. J. Kennedy, Chem. Eur. J. 2006, 12, 7398
13 a) G. Cahiez, C. Chaboche, C. Duplais, A. Moyeux, Org. Lett. 2009, 11, 277; b) G. Cahiez, V. Habiak, C. Duplais, A. Moyeux, Angew. Chem. Int. Ed. 2007, 46, 4364; c) G. Cahiez, C. Duplais, A. Moyeux, Org. Lett. 2007, 9, 3253; d) H. Someya, H. Ohmiya, H. Yorimitsu, K. Oshima, Org. Lett. 2007, 9, 1565; e) W. Affo, H. Ohmiya, T. Fujioka, Y. Ikeda, T. Nakamura, H. Yorimitsu, K. Oshima, Y. Imamura, T. Mizuta, K. Miyoshi J. Am. Chem. Soc. 2006, 128, 8068; f) H. Ohmiya, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2006, 128, 1886; g) H. Ohmiya, H. Yorimitsu, K.Oshima, Org. Lett. 2006, 8, 3093; h) T. Fujioka, T. Nakamura, H. Yorimitsu, K. Oshima, Org. Lett. 2002, 4, 2257.
14 S. H. Park, H. J. Kang, S. Ko, S. Park, S. Chang, Tetrahedron Asym. 2001, 12, 2621.
15 C. M. Taylor, R. Hardré, P. J. B. Edwards, J. H. Park, Org. Lett. 2003, 5, 4413; b) G. C. Hargaden, H. Müller-Bunz, P. J. Guiry, Eur. J. Org. Chem. 2007, 4235.
16 K.-i. Tanaka, H. Iwabuchi, H. Sawanishi, Tetrahedron Asymm. 1995, 6, 2271.
17 A. N. Ratnagiriswaran, K. Venkatachalam, Indian J. Med. Res. 1935, 22, 433.
18 T. R. Govindachari, M. V. Lakshmikantham, S. Rajaddura, Tetrahedron 1961, 14, 284.
19 a) M. Ali, K. K. Bhutani, Phytochemistry 1987, 26, 2089; b) K. K. Bhutani, M. Ali, C. K. Atal, Phytochemistry 1985, 24, 2778.
20 a) Z. Li, Z. Jin, R. Huang, Synthesis 2001, 2365; b) I. R. C. Bick, W. Sinchai, in: The Alkaloids, Vol. 19, (Ed. R. G. A. Rodrigo), Academic, New York, 1981, 193
21 (R)-tylophorine; a) D. N. Mai, J. P. Wolfe, J. Am. Chem. Soc. 2010, 132, 12157. For (S)-tylophorine; b) M. J. Niphakis, G. I. Georg, J. Org. Chem. 2010, 75, 6019; c) K. Wang, B. Su, Z. Wang, M. Wu, Z. Li, Y. Hu, Z. Fan, N. Mi, Q.Wang, J. Agric. Food Chem. 2010, 58, 2703; d) W. Zeng, S. R. Chemler J. Org. Chem. 2008, 73, 6045. For racemic tylophorine, see: e) M. J. Niphakis, G. I. Georg, Org. Lett. 2011, 13, 196; f) L. M. Rossiter, M. L. Slater, R. E. Giessert, S, A. Sakwa, R. J. Herr, J. Org. Chem. 2009, 74, 9554. g) T. H. Chuang, S. J. Lee C. W. Yang, P. L. Wu, Org. Biomol. Chem. 2006, 4, 860
22 a) W. Gao, A. P.-C. Chen, C.-H. Leung, E. A. Gullen, A. Fürstner, Q. Shi, L. Wei, K.-H. Lee, Y.-C. Cheng, Bioorg. Med. Chem. Lett. 2008, 18, 704; b) A. G. Damu, P.-C. Kuo, L.-S. Shi, C.-Y. Li, C.-S. Kuoh, P.-L. Wu, T.-S. Wu, Nat. Prod. 2005, 68, 1071
23 a) A. Pictet, T. Spengler, Chem. Ber. 1911, 44, 2030; b) P. S. Cutter, R. B. Miller, N. E. Schore, Tetrahedron 2002, 58, 1471.
24 a) M. J. Niphakis, G. I. Georg, J. Org. Chem. 2010, 75, 6019; b) K. Wang, B. Su, Z. Wang, M. Wu, Z. Li, Y. Hu, Z. Fan, N. Mi, Q. Wang, J. Agric. Food Chem. 2010, 58, 2703; c) W. Zeng, S. R. Chemler J. Org. Chem. 2008, 73, 6045; d) T. F. Buckley III, H. Rapoport, J. Org. Chem. 1983, 48, 4222; e) J. E. Nordlander, F. George Njoroge, J. Org. Chem. 1987, 52, 1627; f) L. M. Rossiter, M. L. Slater, R. E. Giessert, S. A. Sakwa, R. J. Herr, J. Org. Chem. 2009, 74, 9554
25 Y.-H. Kung, Y.-S. Cheng, C.-C. Tai, W.-S. Liu, C.-C. Shin, C.-C. Ma, Y.-C. Tsai, T.-C. Wu, M.-Y. Kuo, Y.-T. Wu, Chem. Eur. J. 2010, 16, 5909.
26 a) F. R. Leroux, L. Bonnafoux, C. Heiss, F. Colobert, D. A. Lanfranchi, Adv. Synth. Catal. 2007, 349, 2705; b) F. Leroux, M. Schlosser, Angew. Chem. 2002, 114, 4447; Angew. Chem. Int. Ed. 2002, 41, 4272.
27 D. N. Mai, J. P. Wolfe, J. Am. Chem. Soc. 2010, 132, 12157.