簡易檢索 / 詳目顯示

研究生: 鄒京府
Tsou, Ching-Fu
論文名稱: 低功耗低位元能量高整合度之開關位移鍵接收機與低功耗位元能量提升技術之開關位移鍵發射機
A Low-Power, Low Energy-per-bit, High-Integrated OOK Receiver And A Low-Power OOK Transmitter with Energy-per-bit-improved Technique
指導教授: 李順裕
Lee, Shuenn-Yuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 153
中文關鍵詞: 射頻發射接收機身體感測網路開關位移鍵調變封包檢測器基頻放大器栓鎖比較器諧波檢測元件壓控振盪器自混頻倍頻器功率放大器電流再利用
外文關鍵詞: RF transceiver, Body Sensor Network, On-off-keying modulation, Envelope detector, Baseband amplifier, Latch-Comparator, Harmonic detection, Self-mixing, Frequency doubler, Power amplifier, Current-reused
相關次數: 點閱:105下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低功耗低位元能量高整合度之開關位移鍵接收機與
    低功耗位元能量提升技術之開關位移鍵發射機
    鄒京府* 李順裕**

    國立成功大學電機工程學系研究所碩士班通訊暨生物積體電路設計實驗室
    摘要
    本論文根據 ISM Band 提出應用於身體感測網路系統之 2.4GHz 射頻發射機電路與接收機電路,因為是應用於穿戴式無線生理訊號檢測系統中,所以整體電路的設計都以低功耗、低面積為主要設計目標,達到延長使用時間,以及未來便於貼身以及植入的考量。論文中分成兩大部分,第一部分為 OOK 接收機,第二部分為 OOK 發射機。
    論文的第一部分,創新且改良了接收機的兩大內部電路方塊。在封包檢測器與基頻放大器之中,採用創新電路架構,成功地在維持平方率接收機本身具低功耗與低面積的優點之下,進一步地提高了增益且加大了頻寬,且將單端轉雙端的 balun 整合入晶片設計中,進一步縮小面積。量測結果顯示,功耗為 11.1 W,靈敏度-46 dBm, 位元率 1 Mbps,位元能量 11.1 pJ/bit。
    論文中的第二部分,為應用於身體感測網路之發射機設計,此發射機系統由三塊電路所構成:偏壓刺激電路、電流再利用自混頻壓控振盪器、四倍轉導增益功率放大器。其中在偏壓刺激電路中結合了一些 Delay 元件與開關的設計,可讓壓控振盪器在尚未起振時,瞬間提供壓控振盪器較大的偏壓電壓,並維持一段較短的時間後,再將刺激偏壓會回歸正常偏壓電壓,經由實行了此刺激之後,壓控振盪器就會比未刺激的情況下,具有更快的起振時間,而且壓控振盪器所消耗的功耗,會和未刺激的情況下是相近的,因此就能在消耗功耗極小的情況下,設計出一個起振時間更快的壓控振

    盪器。在電流再利用自混頻壓控振盪器中,讓壓控振盪器與倍頻器做結合產生自混頻, 可使壓控振盪器在更小的偏壓電流之下,達到相同的相位雜訊規格。由於使用了電流再利用的技巧,壓控振盪器與倍頻器是共用同一個電流的,因此多使用倍頻器並不會增加功耗。本設計所提出的四倍轉導增益功率放大器,可以在單一的直流電流路徑下, 接收壓控振盪器的差動輸出訊號,並將訊號輸出至給天線,此功率放大器使用了雙重電流再利用的技術,因此所提出的功率放大器可以產生四倍的轉導增益(Gm),相較於傳統的電流再利用架構,相同的偏壓電流只能產生兩倍的轉導增益輸出,因此本功率放大器就能成功地在極小的功耗之下產生極大的輸出功率。發射機的量測結果為,功耗為 0.81 mW,位元率 25 MHz,輸出功率 -14.2 dBm,位元能量 32.4pJ/bit。

    A Low-Power, Low Energy-Per-Bit, High-Integrated OOK Receiver and a Low-Power OOK Transmitter with Energy-Per-Bit-Improved Technique
    Ching-Fu Tsou Shuenn-Yuh Lee
    Department of Electrical Engineering, National Cheng Kung University

    SUMMARY
    In this thesis, two RF chips with on-off keying (OOK) modulator/demodulator have been implemented for 2.4GHz ISM band. One is the OOK-receiver and another one is the OOK-transmitter. Because of the application in portable bio-signal detection system, low-power and low-area are the main concerns on the design, which can extend the usage time and improve the convenience of portability and implantation. There are two parts in this thesis, the first part is the OOK-Receiver, and the second part is the OOK-Transmitter.The first part of this thesis is the OOK- receiver for body sensor network with the square-law detection technique. With this modulation, the power consumption will be half because there is no power consumption while the system is passing the signal 0 and the circuit architecture is very simple, so the area of the chip will be smaller. In this thesis, the sensitivity and bit-rate will be improved by the proposed OOK-receiver. The second part of this thesis is the OOK-transmitter for body sensor network. The OOK-transmitter is made of the bias-stimulating circuit, current-reused self-mixing voltage-controlled-oscillator and the quadruple-Gm power amplifier. With these three novel circuit blocks, we can maintain the original advantage of the low power and low area of the OOK modulation, and improve the disadvantages of the low data rate and the low output power.

    Key Word: RF transceiver, Body Sensor Network, On-off-keying modulation, Envelope detector, Baseband amplifier, Latch-Comparator, Harmonic detection, Self-mixing, Frequency doubler, Power amplifier, Current-reused
    INTRODUCTION
    In a general communication system, the power consumption is usually dominated by the RF-front-end. Hence, if we can decrease the power consumption of the RF-front-end, the lifetime of the battery will be increased. In order to transform the single-ended input signal

    from Antenna to differential output signal, the balun with big area will be used to increase the xost of the chip. It will make against to the popularity of the wireless bio-signal acquisition system. Hence, in this thesis, a low power, low-area receiver and transmitter have been proposed. In the OOK-receiver, the active balun with self-biasing gain-bandwidth-improved envelope detector is proposed to overcome the drawback of large area implemented by passive balun. The proposed current-reused cascode-two-stage amplifier has the advantages of the two-stage amplifier with high gain and cascade amplifier with wide bandwidth. According to the proposed envelope detector and amplifier, an ultra-low-power receiver can be achieved.
    In this OOK-transmitter, the bias-stimulating circuit (BSC) with the energy-per-bit- improved technique has been proposed. The self-mixing technique is implemented in the current-reused self-mixing voltage-controlled-oscillator (CRSMVCO) by the frequency-doubler and the cross-couple-mixer which are originally used in a traditional voltage controlled oscillator (VCO).The proposed quadruple-Gm power amplifier (QGPA), including two common-drain (CD) amplifiers and two common-source (CS) amplifiers, can achieve quadruple-gm but have the same power consumption as the traditional class-B power amplifier.
    MATERIALS AND METHODS
    In the OOK Receiver, the OOK modulated signal will be input to the matching network. Then the harmonic demodulation will be conducted in the square-law device. After the square-law demodulation, the high order harmonic part of the signal will be filtered by the low-pass filter. The proposed envelope detector is shown in Fig-1, and the current of square-law detector is derived as:

    The AC part will be filtered out by the low-pass filter and the DC part is the demodulated signal of the input OOK signal.

    After the demodulation, the amplitude of the signal is small. In order to amplify the signal to the level which can be detected by the comparator, a baseband amplifier is used ahead of comparator.The proposed amplifier has the advantages of the two-stage amplifier with high gain and cascade amplifier with wide bandwidth. Then the low power can be achieved without degrading the performance. The schematic of the proposed baseband amplifier is shown in Fig-2.

    In the OOK Transmitter, the input digital data will be input to the BSC and the amplitude of the input digital data will be stimulated by the BSC at the first rising edge. Using BSC, the data-rate of the transmitter can be increased without increasing the power

    consumption as comparing with traditional structures. The schematic of the proposed BSC is illustrated in Fig-3.

    The schematic of the proposed CRSMVCO is shown in Fig-4. The cross-couple-mixer will carry out the down-frequency-conversion and generate a 2.45-GHz frequency and re-send it to the LC tank of the VCO as a positive feedback loop. With this positive feedback loop, the oscillation of the VCO will be strengthened, the amplitude of the resonant frequency will be increased and the power-efficiency of the power amplifier will be improved.

    In the proposed Quadruple-Gm Power Amplifier (QGPA), the total transconductance is contributed by four MOSFETs, so the QGPA will produce quadruple-gm. With this technique, the power-efficiency of the transmitter can be improved. The proposed QGPA is shown in Fig-5.

    RESULTS AND DISCUSSION
    The proposed OOK-receiver has been fabricated in TSMC 0.18μm 1P6M CMOS process. Fig-6 shows the layout photograph of proposed OOK-Receiver. The chip area is 1.138 x 0.978 mm2.

    The pseudo-random OOK input signal and the digital output signal are illustrated in Fig-7. The power of the pseudo-random OOK input signal is -50dBm and the amplitude of
    the digital output signal is 1.2V. The bit-rate of the pseudo-random OOK input signal is 1Mb/s.

    Conclusion
    The proposed OOK-receiver includes balun envelope detector and baseband amplifier. The proposed OOK-transmitter is consisted of a BSC, a CRSMVCO and a QGPA. In order to comply with the requirements of body sensor network, the proposed circuits adopt OOK modulation in the transmitter and direct-up-conversion architecture in the receiver. The measured the power consumption in receiver is 11.1 W at the data rate of 1 Mb/s. The sensitivity and energy-per-bit are -46 dBm and 11.1pJ/bit, respectively. The measured the power consumption in transmitter is 0.81 mW with the output power of -14.2dBm and data rate of 25 Mb/s. Moreover, the energy-per-bit and power-efficiency are 32.4pJ/bit and 5.3%, respectively. It reveals that the proposed transceiver can be fitted in with the requirement of body sensor network for the bio-signal acquisition.

    章節目錄 摘要 I 致謝辭 X 章節目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1-1 研究動機 1 1-2 生物醫療電子發展現況 2 1-3 無線居家看護系統簡介 3 1-4 無線通訊系統發展現況 6 1-5 論文架構 9 第二章 射頻前端系統架構介紹 10 2-1 系統架構選擇 10 2-2 HETERODYNE接收機(超外差接收機) 10 2-3 HOMODYNE接收機(直接降頻接收機) 14 2-4 超再生接收機 16 2-5 平方率檢測接收機 18 2-6 射頻發射機架構選擇 19 2-7 雙級生頻發射機 19 2-8 直接升頻發射機 20 2-9 鎖相迴路發射機 22 2-10混合型發射機 23 2-11 低中頻發射機 24 2-12 雜訊源 26 2-12-1 熱雜訊(THERMAL NOISE) 26 2-12-2 閃爍雜訊(FLICKER NOISE) 29 2-13 雜訊指數 30 2-14 非線性特性 32 2-14-1 1DB抑制點 32 2-14-2 三階截距點 34 2-15 振盪器原理 37 2-16 被動元件阻抗之轉換 38 第三章 發射機與接收機系統架構選擇與類比前端感測網路介紹 41 3-1類比前端檢測電路 41 3-2調變原理 43 3-2-1振幅鍵移調變(ASK) 43 3-2-2頻率鍵移調變(FSK) 45 3-3規格考量 47 3-4應用於BODY SENSOR NETWORK之2.45GHZ之OOK發射機架構 與 接收機架構選擇 49 3-5 ISO 18000-4規範 50 3-6 MONOPOLE & DIPOLE 天線 51 第四章 應用於身體感測網路之2.45GHZ超低功耗高整合度之OOK接收機 53 4-1 接收機系統方塊介紹 53 4-2 接收機各電路架構圖 53 4-3 單轉雙封包檢測器架構簡介 56 4-4 高通可變頻直流轉換緩衝器 74 4-5 基頻放大器 77 4-6 動態栓鎖比較器 85 4-7 接收機 PRE-SIM結果 86 4-8 接收機POST-SIM結果 92 4-9 量測考量與量測結果 97 4-10 預計規格列表 102 4-11 效能比較表 103 第五章 應用於身體感測網路之2.45GHZ位元能量提升OOK發射機 104 5-1 發射機系統方塊介紹 104 5-2 發射機各電路架構圖 106 5-3 決定系統架構與電路規格 108 5-4 自混頻壓控振盪器架構簡介 112 5-5 四倍轉導值電流再利用功率放大器架構簡介 116 5-6 偏壓刺激電路架構簡介 123 5-7 發射機PRE-SIM模擬結果 129 5-8 發射機POST-SIM模擬結果 131 5-9 量測考量與量測結果 137 5-10 預期規格列表 144 5-11 效能比較表 145 第六章 結論與未來展望 146 口試委員回覆意見 148 參考文獻 149

    參考文獻
    [1] K.W. Cheng , X. Liu , M. Je, “ A 2.4/5.8 GHz 10uW wake-up receiver with
    −65/−50 dBm sensitivity using direct active rf detection” 2012 IEEE
    Asian Solid State Circuits Conference (A-SSCC), Nov.2012, pp.337-340.
    [2] X. Huang, S. Rampu, X. Wang , “ A 2.4GHz/915MHz 51μw wake up receiver
    with offset and noise suppression” 2010 IEEE International Solid-State Circuits
    Conference (ISSCC), Feb 2010, pp. 222-223.
    [3] N.M.Pletcher, S.Gambini, and J.Rabaey,“A 52 uw wake-up receiver with 72 dbm
    sensitivity using an uncertain-IF architecture” 2009 IEEE Journal of Solid-State
    Circuits (JSSC), vol.44, no.1, pp. 269-280, Jan. 2009.
    [4] L. J-Seung, Kim Joo-Myoung, Lee Jae-Sup, Han Seok-Kyun1, Lee Sang-Gug, “ A
    227pJ/b -83dBm 2.4GHz Multi-Channel OOK Receiver Adopting Receiver-Based
    FLL” 2015 IEEE International Solid-State Circuits Conference (ISSCC), Feb.
    2015, pp. 1-3
    [5] D. Jeong, H. Lee, T. Chung, S. Lee, Jaesup Lee, and Bumman Kim, “ Optimized
    Ultralow-Power Amplifier for OOK Transmitter With Shaped Voltage Drive”
    2016 IEEE Transactions on Microwave Theory and Techniques (TMTT), vol.64,
    no.8, pp.2615-2622, Aug.2016
    [6] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, “ A
    Micro-Power EEG Acquisition SoC with Integrated Feature Extraction Processor
    for a Chronic Seizure Detection System” 2010 IEEE Journal of Solid-State
    Circuits (JSSC), vol. 45, no.4, pp. 804-816, Apr. 2010.
    [7] S.Y. Lee, Y. C. Su, M. C. Liang, J. H. Hong, C. H. Hsieh, C. M. Yang, Y. Y.
    Chen,H.Y.Lai, J. W. Lin, Q. Fang, “A programmable implantable micro-stimulator
    SoC with wireless telemetry: Application in closed-loop endocardial stimulation
    for cardiac pacemaker” 2011 IEEE International Solid-State Circuits Conference
    (ISSCC), Feb. 2011, pp. 44-45.
    [8] M. Vidojkovic, H. Xiongchuan, P. Harpe, S. Rampu, Z. Cui, H. Li, K. Imamura, B.
    Busze, F. Bouwens, M. Konijnenburg, J. Santana, A. Breeschoten, J. Huisken, G.
    Dolmans, and H. de Groot, “ A 2.4GHz ULP OOK single-chip transceiver for
    healthcare applications” 2011 IEEE International Solid-State Circuits Conference
    (ISSCC), Feb. 2011, pp. 458-460.
    [9] S.Y Lee, L.H Wang, Y.H Lin, “A CMOS Quadrature VCO With Subharmonic and
    Injection-Locked Techniques” 2010 IEEE Transactions on Circuits and Systems II
    (TCASII), vol. 57, no. 11, pp.843-847, Nov 2010
    [10] H.Milosiu, F.Oehler, M.Eppel, D.Fruehsorger, and T.Thoenes,“A 7-μW 2.4-GHz
    wake-up receiver with -80 dBm sensitivity and high co-channel interferer
    tolerance” 2015 IEEE Wireless Sensors and Sensor Networks(WiSNet), Jan. 2015,
    pp.35-37.
    [11] X.Huang, P.Harpe, G.Dolmans, H.deGroot, and J.R.Long, “A 780–950 MHz, 64–
    146 µW Power-Scalable Synchronized-Switching OOK Receiver for Wireless
    Event-Driven Applications” 2014 IEEE Journal of Solid-State Circuits (JSSC),
    vol.49, no.5, pp.1135-1147, May 2014.
    [12] S. Alsaegh, S. Mohamed and Y. Manoli, “ Design of 1 mW CMOS OOK
    Super-Regenerative Receiver for 402-405 MHz Medical Applications” 2014 IEEE
    International Symposium on Circuits and Systems (ISCAS), June 2014,
    pp.1400-1403
    [13] J.Y Hsieh, Y.C Huang, P.H Kuo, T. Wang, and S.S Lu, “ A 0.45-V Low-Power
    OOK/FSK RF Receiver in 0.18μm CMOS Technology for Implantable Medical
    Applications” 2016 IEEE Transactions on Circuits and Systems I: Regular Papers
    (TCASI) vol.63, no.8, pp.1123-1130, Aug.2016.
    [14] S.E Chen and K.W Cheng, “A 433 MHz 54 μW OOK/FSK/PSK Compatible
    Wake-Up Receiver with 11 μW Low-Power Mode Based on Injection-Locked
    Oscillator” 2016 IEEE European Solid-State Circuits Conference(ESSCIRC),
    Sep.2016, pp.137-140.
    [15] S. Drago, M.W. Domine, “A 2.4GHz 830pJbit Duty-Cycled Wake-Up Receiver
    with -82dBm Sensitivity for Crystal-Less Wireless Sensor Nodes” 2010 IEEE
    International Solid-State Circuits Conference (ISSCC), Feb. 2010, pp. 224–225.
    [16] B.V.Liempd, M.Vidojkovic, M.Lont, C.Zhou, P.Harpe, D.Milosevic, and
    G.Dolmans, “A 3μW fully-differential RF envelope detector for ultra-low power
    receivers” 2012 IEEE International Symposium on Circuits and Systems(ISCAS),
    May 2012, pp.1496-1499.
    [17] J. Jaeyoung ,S. Zhu et al.,“22-pJ/bit energy-efficient 2.4-GHz implantable OOK
    transmitter for wireless biotelemetry systems: In vitro experiments using rat
    skin-mimic” 2010 IEEE Transactions on Microwave Theory and
    Techniques(TMTT), vol.58, no.12, pp.4102-4111, Dec.2010.
    [18] K.Raja and Y.P.Xu , “A 52 pJ/bit OOK transmitter with adaptable data rate” 2008
    IEEE Asian Solid-State Circuits Conference(ASSCC), Nov.2008, pp.341–344.
    [19] P.P.Mercier, S.Bandyopadhyay, A.C. Lysaght, K.M. Stankovic, and A.
    P.Chandrakasan, “A sub-nW 2.4 GHz transmitter for low data-rate sensing
    applications” 2014 IEEE Journal of Solid-State Circuits (JSSC), vol.49, no.7,
    pp.1463-1474, Jul.2014.
    [20] D.Jeong, H.Lee, T.Chung, S.Lee, J.Lee, B.Kim, “Optimized Ultralow-Power
    Amplifier for OOK Transmitter With Shaped Voltage Drive” 2016 IEEE
    Transactions on Microwave Theory and Techniques(TMTT), vol.64, no.8,
    pp.2615-2622, Jun.2016.
    [21] M.S.Jahan, J.Langford, J.Holleman , “A low-power FSK/OOK transmitter for
    915 MHz ISM band” 2015 IEEE Radio Frequency Integrated Circuits Symposium
    (RFIC), May 2015, pp.163-166
    [22] X. Huang, P. Harpe, X. Wang, G. Dolmans, and H.D Groot, “A 0dBm 10Mbps
    2.4GHz ultra-low power ASK/OOK transmitter with digital
    pulse-shaping” 2010 IEEE Radio Frequency Integrated Circuits Symposium
    (RFIC), May. 2010, pp. 23-25
    [23] X.Yu, S.P.Sah, H.Rashtian, S.Mirabbasi, P.P.Pande, D.Heo, “A 1.2-pJ/bit 16-Gb/s
    60-GHz OOK Transmitter in 65-nm CMOS for Wireless Network-On-Chip” 2014
    IEEE Transactions on Microwave Theory and Techniques(TMTT), vol.62, no.10,
    pp.2357-2369, Oct.2014.
    [24] Y. Zhang, R. Zhou, W. Rhee, and Z. Wang, “A 1.9mW 750kb/s 2.4GHz F-OOK
    Transmitter with Symmetric FM Template and High-Point Modulation PLL” 2016
    IEEE Asian Solid-State Circuits Conference (A-SSCC) , Nov. 2016, pp.277-280
    [25] H.Ito, S.Masui, Y. Momiyama,et al., “A 2.3 pJ/bit frequency-stable impulse OOK
    transmitter powered directly by an RF energy harvesting circuit with −19.5 dBm
    sensitivity” 2014 IEEE Radio Frequency Integrated Circuits Symposium(RFIC),
    Jun.2014, pp.13-16.
    [26] R.Hamdi, A.Desmarais, A.Belarbi, D.Deslandes, F.Nabki “A programmable
    OOK impulse radio ultra wideband transmitter with power cycling and spectral
    agility” 2012 IEEE International Symposium on Circuits and Systems(ISCAS),
    May 2012, pp.2541-2544.
    [27] S.Wang and W.J. Lin “ A K-band Gm-boosting differential Colpitts VCO in
    0.18-μm CMOS ” 2013 IEEE Asia-Pacific Microwave Conference Proceedings
    (APMC), Nov.2013, pp.1042-1045
    [28] K.Kim, J.Choi, M.Seo, S. Nam “ 500 MHz OOK transmitter with 22 pj/bit,
    38.4% efficiency using RF current combining”, 2014 IEEE Microwave and
    Wireless Components Letters, Mar. 2014, pp. 424-426
    [29] J. Ayers, K. Mayaram, and T. S. Fiez, “ An Ultralow-Power Receiver for Wireless
    Sensor Networks” 2010 IEEE Journal of Solid-State Circuits (JSSC), vol.45, no.9,
    pp.1759-1769, Aug.2010.
    [30] R. F. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, “A 200μW Eight-Channel
    EEG Acquisition ASIC for Ambulatory EEG systems,” IEEE J. Solid-State
    Circuits, vol. 43, No. 12, pp. 3025 -3038, Dec. 2008.
    [31] M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, “Micropower CMOS
    Integrated Low noise Amplification, Filtering, and Digitization of Multimodal
    Neuropotentials,” IEEE Trans. Biomedical Circuit and Systems, vol. 3, No. 1, pp.
    1-10, Feb. 2009.
    [32] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, “ A
    Micro-Power EEG Acquisition SoC with Integrated Feature Extraction Processor
    for a Chronic Seizure Detection System,” IEEE J. Solid-State Circuits, vol. 45,
    No.4, pp. 804-816, Apr. 2010.
    [33] S. Y. Lee, Y. C. Su, M. C. Liang, J. H. Hong, C. H. Hsieh, C. M. Yang, Y. Y.
    Chen, H. Y. Lai, J. W. Lin, Q. Fang, “A programmable implantable
    micro-stimulator SoC with wireless telemetry: Application in closed-loop
    endocardial stimulation for cardiac pacemaker,” ISSCC Dig. Tech. Papers, Feb.
    2011, pp. 44 – 45.
    [34] Information technology—Radio frequency identification for item management,
    ISO/IEC 18000 Part 4, International Standards Organization, 2004.

    無法下載圖示 校內:2023-01-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE