簡易檢索 / 詳目顯示

研究生: 鍾永祺
Chung, Yung-Chi
論文名稱: 固態變壓器之輸入串聯輸出並聯電源轉換器之研製
Design and Implementation of Input-Series Output-Parallel Power Converters for Solid-State Transformer
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 106
中文關鍵詞: 固態變壓器輸入串聯輸出並聯模組化
外文關鍵詞: Solid-state transformer, Input-series output-parallel, Modularization
相關次數: 點閱:80下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究應用於電動車快速充電樁之固態變壓器,固態變壓器由三組電源轉換器模組所組成,前級為升壓式功率因數修正轉換器,用以提升功率因數,後級為半橋LLC串聯諧振轉換器,提供負載所需之電壓,在輸出端有均流控制電路,提升電源轉換器模組間之輸出功率分擔能力,並加入模組啟動電路,利用電流感測器判斷系統總輸出電流值來決定啟動之電源轉換器模組數目,以提升輕載效率。文中探討固態變壓器之電路架構,分析動作原理與設計流程,並且使用SIMPLIS電路模擬軟體進行電路模擬,最後實作固態變壓器,由三組電源轉換器輸入串聯輸出並聯構成,總輸出功率為3 kW,輸出規格為48 V/66 A,經實驗驗證各模組輸出電流之均流誤差率可達2 %以下。在交流輸入電壓300 Vrms下,實測固態變壓器,整體電路最高效率為87.51 %,且在有模組啟動電路的情況下,輕載效率有明顯的提升。

    This thesis focus on solid-state transformer for electric vehicle fast charging station. The solid-state transformer consists of three sets of power converter modules. The first stage is a boost power factor correction converter to improve the power factor. The second stage is a half-bridge LLC series resonant converter for providing the required voltage to the load. There is a current sharing control circuit at the output to improve the output power sharing capability among the power converter modules. The module startup circuit is designed. The current sensor is used to measure the total output current value of the system to determine the number of power converter modules to start, thereby improving light load efficiency. Circuit architecture of solid-state transformer is discussed in this thesis. The operation and design processes are analyzed, and SIMPLIS circuit simulation software is used for circuit simulation. Finally, the solid-state transformer is implemented. The solid-state transformer consists of three sets of input-series output-parallel power converter. The total output power is 3 kW, and the output specification is 48 V/66 A. It has been verified by experiments that the current sharing error of each module can be less than 2 %. When the AC input voltage is 300 Vrms, the solid-state transformer is measured. The highest efficiency of the solid-state transformer is 87.51 %. In the case of the module startup circuit, the light load efficiency has been significantly improved.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究背景 3 1-3 研究方法 7 1-4 論文大綱 8 第二章 功率因數修正技術分析 9 2-1 前言 9 2-2 功率因數定義 9 2-3 功率因數修正技術 12 2-3-1 連續導通模式 12 2-3-2 臨界導通模式 16 2-3-3 非連續導通模式 17 第三章 DC/DC轉換器電路與均流控制法分析 19 3-1 前言 19 3-2 半橋LLC串聯諧振轉換器動作原理 19 3-3 半橋LLC串聯諧振轉換器轉移函數分析 26 3-3-1 工作區域分析 29 3-3-2 Q¬r值大小與電壓增益分析 30 3-3-3 K值大小與電壓增益分析 31 3-4 怠滯時間與零電壓切換分析 32 3-4-1 區域I零電壓切換之條件 32 3-4-2 區域II零電壓切換之條件 35 3-5 電壓下降均流法 37 3-5-1 內部電壓下降法 39 3-5-2 串聯電阻下降法 40 3-5-3 回授電壓下降法 41 3-6 主動式均流法 42 3-6-1 內迴路調整法 43 3-6-2 外迴路調整法 43 3-6-3 外接控制器調整法 44 3-6-4 平均電流均流法 45 3-6-5 直接主僕均流法 46 3-6-6 自動主僕均流法 47 第四章 硬體電路設計 49 4-1 前言 49 4-2 升壓式功率因數修正轉換器設計 50 4-2-1 功率元件參數設計 52 4-2-2 電流誤差放大器補償設計 53 4-2-3 電壓誤差放大器補償設計 55 4-3 半橋LLC串聯諧振轉換器設計 57 4-3-1 計算變壓器圈數比 59 4-3-2 計算諧振電容值 59 4-3-3 計算諧振電感值 60 4-3-4 計算激磁電感值 60 4-4 並聯均流控制電路設計 61 4-4-1 UC3902之內部控制電路 62 4-4-2 UC3902之參數設計 63 4-5 固態變壓器輸入串聯電路與模組啟動電路 65 第五章 系統模擬與實驗結果 68 5-1 前言 68 5-2 升壓式功率因數修正轉換器模擬與實驗結果 69 5-2-1 SIMPLIS升壓式功率因數修正轉換器模擬 69 5-2-2 升壓式功率因數修正轉換器實驗波形量測 73 5-3 半橋LLC串聯諧振轉換器模擬與實驗結果 78 5-3-1 SIMPLIS半橋LLC串聯諧振轉換器模擬 79 5-3-2 半橋LLC串聯諧振轉換器實驗波形量測 81 5-4 固態變壓器並聯均流電路實驗結果 86 5-5 固態變壓器輸入串聯電路實驗結果 90 5-6 模組啟動電路實驗結果 93 第六章 結論與未來研究方向 99 6-1 結論 99 6-2 未來研究方向 100 參考文獻 101

    [1] X. She and A. Q. Huang, “Solid state transformer in the future smart electrical system,” in Proc. IEEE Power Energy Soc. General Meeting, 2013, pp.1-5.
    [2] X. She, A. Q. Huang, and R. Burgos, “Review of solid-state transformer technologies and their application in power distribution systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 3, pp. 186-198, Sep. 2013.
    [3] R. P. Londero, A. P. C. d. Mello, and G. S. d. Silva, “Comparison between conventional and solid state transformers in smart distribution grids,” in Proc. IEEE PES Innovative Smart Grid Technol. Conf., 2019, pp.1-6.
    [4] J. E. Huber and J. W. Kolar, “Applicability of solid-state transformers in today’s and future distribution grids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 337-346, Jan. 2019.
    [5] A. Q. Huang, “Medium-Voltage Solid-State Transformer: Technology for a Smarter and Resilient Grid,” IEEE Ind. Electron. Magazine, vol. 10, no. 3, pp. 29-42, Sep. 2016.
    [6] H. Fan and H. Li, “High-frequency transformer isolated bidirectional dc-dc converter modules with high efficiency over wide load range for 20 kVA solid-state transformer,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3599-3608, Dec. 2011.
    [7] X. She, X. Yu, F. Wang, and A. Q. Huang, “Design and demonstration of a 3.6-kV-120-V/10-kVA solid-state transformer for smart grid application,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3982-3996, Aug. 2014.
    [8] X. Zhang, Y. Xu, A. Siddique, Y. Long, and X. Xiao, “A microprocessor resource-saving dual active bridge control for startup and restart of three-stage modular solid-state transformer,” IEEE Trans. Power Del., vol. 35, no. 3, pp. 1443-1454, Jun. 2020.
    [9] D. Dong, M. Agamy, J. Z. Bebic, Q. Chen, and G. Mandrusiak, “A modular SiC high-frequency solid-state transformer for medium-voltage applications: design, implementation, and testing,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 7, no. 2, pp. 768-778, Jun. 2019.
    [10] Q. Chen, R. Raju, D. Dong, and M. Agamy, “High frequency transformer insulation in medium voltage SiC enabled air-cooled solid-state transformer,” in Proc. IEEE Energy Convers. Congr. Expo., 2018, pp. 1-10.
    [11] J. Shi, W. Gou, H. Yuan, T. Zhao, and A. Q. Huang, “Research on voltage and power balance control for cascaded modular solid-state transformer,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1154-1166, Apr. 2011.
    [12] X. Feng, J. Liu, and F. C. Lee, “Impedance specifications for stable DC distributed power systems,” IEEE Trans. Power Electron., vol. 17, no. 2, pp.157-162, Mar. 2002.
    [13] F. C. Lee, “High-frequency quasi-resonant converter technologies,” Proc. IEEE, vol. 76, no. 4, pp. 377-390, Apr. 1998.
    [14] P. Caldeira, R. Liu, D. Dalal, and W. J. Gu, “Comparison of EMI performance of PWM and resonant power converters,” in Proc. IEEE Power Electron. Spec. Conf., 1993, pp. 136-140.
    [15] D. Zhang, D. Y. Chen, and F. C. Lee, “An experimental comparison of conducted EMI emissions between a zero-voltage transition circuit and a hard switching circuit,” in Proc. IEEE Power Electron. Spec. Conf., 1996, pp. 1992-1997.
    [16] H. Chung, S. Y. R. Hui, and K. K. Tse, “Reduction of power converter EMI emission using soft-switching technique,” IEEE Trans. Electromagn. Compat., vol. 40, no. 3, pp. 282-287, Aug. 1998.
    [17] F. C. Lee, “High-Frequency Quasi-resonant and multi-resonant converter technologies,” in Proc. IES, 1988, pp. 509-521.
    [18] G. Li, J. Xia, K. Wang, Y. Deng, X. He, and Y. Wang, “Hybrid modulation of parallel-series LLC resonant converter and phase shift full-bridge converter for a dual-output DC-DC converter,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 7, no. 2, pp. 833-842, Jun. 2019.
    [19] A. Brambilla, E. Dallago, P. Nora, and G. Sassone, “Study and implementation of a low conduction loss zero-current resonant switch,” IEEE Trans. Ind. Electron., vol. 41, no. 2, pp. 241-250, Apr. 1994.
    [20] G. Hua and F. C. Lee, “Soft-switching techniques in PWM converters,” IEEE Trans. Ind. Electron., vol. 42, no. 6, pp. 595-603, Dec. 1995.
    [21] 陳昱凱,雙相交錯式半橋 LLC 諧振轉換器之研製,國立成功大學電 機工程學系碩士論文,2012 年。
    [22] B. Mammano, “Distributed power system,” Unitrode Seminar, 1993, pp. 1-11.
    [23] W. A. Tabisz, M. M. Jovanovic, and F. C. Lee, “Present and future of distributed power systems,” in Proc. IEEE APEC, 1992, pp. 11-18.
    [24] S. Luo, “A review of distributed power system part I: DC distributed power system,” IEEE Aerosp. and Electron. Syst. Magazine, vol. 20, no. 8, pp. 5-16, Aug. 2005.
    [25] J. Perkinson, “Current sharing of redundant DC-DC converters in high availability system - a simple approach,” in Proc. IEEE APEC, 1995, pp. 953-956.
    [26] P. Chaudhary, S. Samanta, and P. Sensarma, “Input-series-output-parallel-connected buck rectifiers for high-voltage application,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 193-202, Apr. 2015.
    [27] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” in Proc. IEEE Power Electron. Spec. Conf., 1999, pp. 901-908.
    [28] B. Choi, “Comparative study on paralleling schemes of converter modules for distributed power applications,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 194-199, Apr. 1998.
    [29] I. Batarseh, K. Siri, and H. Lee, “Investigation of the output droop characteristics of parallel-connected DC-DC converters,” in Proc. IEEE Power Electron. Spec. Conf., 1994, pp. 1362-1371.
    [30] 黃偉明,直流電源轉換器並聯之電流分配控制,國立成功大學電機工程學系碩士論文,2007年。
    [31] 葉家佑,數位/類比混合控制多相式低電壓大電流電源並聯模組之研製,國立成功大學電機工程學系碩士論文,2008年。
    [32] 藍元志,具溫度感測補償均流機制之多模組並聯電源轉換器,國立成功大學電機工程學系碩士論文,2013年。
    [33] Y. Suzuki, T. Teshima, I. Sugawara, and A. Takeuchi, “Experimental studies on active and passive PFC circuits,” in Proc. IEEE International Telecommunications Energy Conf., 1997, pp. 571-578.
    [34] L. Rossetto, G. Spiazzi, and P. Tenti, “Control techniques for power factor correction converters,” in Proc. EPE Conf. Power Electron. and Motion Control, 1994, pp. 1332-1338.
    [35] M. Orabi and A. E. Aroudi, “Different frequency instabilities of averaged current controlled boost PFC AC-DC regulators,” in Proc. IEEE International Telecommunications Energy Conf., 2006, pp. 1-8.
    [36] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE Power Electron. Spec. Conf., 1990, pp. 800-807.
    [37] R. Redl and B. P. Erisman, “Reducing distortion in peak-current-controlled boost power-factor correctors,” in Proc. IEEE International Power Electron. Congress, 1994, pp. 92-100.
    [38] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE APEC, 1993, pp. 267-273.
    [39] 梁成輝,錯相式LLC半橋諧振轉換器之研製,國立成功大學電機工程學系碩士論文,2008年。
    [40] 謝士弘,LLC半橋串聯諧振式轉換器之設計考量與研製,國立台灣科技大學電子工程系碩士論文,2007年。
    [41] J. S. Glaser and A. F. Witulski, “Output plane analysis of load-sharing in multiple-module converter systems,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 43-50, Jan. 1994.
    [42] Y. Huang and C. K. Tse, “Circuit theoretic classification of parallel connected DC-DC converters,” IEEE Trans. on Circuits and Syst. I: Regular Papers, vol. 54, no. 5, pp. 1099-1108, May 2007.
    [43] J. W. Kim, H. S. Choi, and B. H. Cho, “A novel droop method for the converter parallel operation,” in Proc. IEEE APEC, 2001, pp. 959-964.
    [44] C. Jamerson, T. Long, and C. Mullett, “Seven ways to parallel a magamp,” in Proc. IEEE APEC, 1993, pp. 469-474.
    [45] K. Siri and C. Truong, “Performance limitations of random current sharing parallel-connected converter systems and their solution,” in Proc. IEEE APEC, 1998, pp. 860-866.
    [46] C. Lin and C. Chen, “Single-wire current-share paralleling of current-mode controlled DC power supplies,” in Proc. IEEE Power Electron. Spec. Conf., 1998, pp. 52-58.
    [47] Y. Panov and M. M. Jovanovic, “Loop gain measurement of paralleled DC-DC converters with average-current-sharing control,” IEEE Trans. Power Electron., vol. 23, no. 6, Nov. 2008.
    [48] Y. Panov, J. Rajagopalan, and F. C. Lee, “Analysis and design of N paralleled DC-DC converters with master-slave current-sharing control,” in Proc. IEEE APEC, 1997, pp. 438-442.
    [49] P. Li and B. Lehman, “A design method for paralleling current mode controlled DC-DC converters,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 748-756, May 2004.
    [50] UC3854BN Datasheet, Texas Instruments, 2008.
    [51] L. Dixon, “Average current mode control of switching power supplies,” Untirode Application note, U-140, pp. 356-369, 1999.
    [52] L6599AD Datasheet, STMicroelectronics, 2017.
    [53] UC3902 Datasheet, Texas Instruments, 2011.

    下載圖示 校內:2023-08-13公開
    校外:2023-08-13公開
    QR CODE