簡易檢索 / 詳目顯示

研究生: 林秉均
Lin, Bing-Jyum
論文名稱: 針對高度非線性系統的系統辨識與伺服控制之見解
Some Insights on System Identification and Servo Control for Highly Nonlinear Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 71
中文關鍵詞: 最佳線性二次數位追蹤器系統辨識離線觀測器/控制器鑑別方法在線觀測器/控制器鑑別方法高度非線性系統
外文關鍵詞: Optimal linear quadratic digital tracker, System identification, Off-line OCID, On-line OCID, Highly nonlinear system
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出三種以伺服控制方法控制高度非線性的PUMA560機械手臂,分別為根據線性最佳化方法設計之最優化二次數位追蹤器、離線與在線觀測器/控制器鑑別方法的模型預測控制,隨之,一些針對高度非線性系統的系統辨識與伺服控制上之見解,也在本論文中被描述。首先,根據多輸入多輸出的非線性系統,我們使用線性最佳化方法找出此非線性系統之精確的狀態相關線性模型,接著,根據此狀態相關的線性系統,提出了最優化二次數位追蹤器,進而控制原來的PUMA 560機械手臂。此外本論文也分別提出了離線與在線觀測器/控制器鑑別方法,並應用於高度非線性的PUMA 560機械手臂控制。隨後,一種新型的觀測器/控制器鑑別方之模型預測控制也在本論文中提出。最後,針對上述三種方法的比較與見解也在結論中提出。

    Three approaches for the servo control of the highly nonlinear PUMA 560 manipulator, i.e., an optimal linearization method-based linear quadratic digital tracker (LQDT), the off-line and on-line observer/control identification (OCID) method-based model predictive controls (MPC), are proposed in this thesis. Consequently, some insights on the system identification and servo control on the highly nonlinear systems are depicted in this thesis. First, for the multi-input multi-output (MIMO) nonlinear system, we use the optimal linearization method to find the explicit state-dependent linear model of this nonlinear system without any approximation. Then, the optimal linear quadratic digital tracker is proposed based on the explicit state-dependent linear model to control the original PUMA 560 manipulator. Besides, the off-line and on-line observer/control identification (OCID) methods are also proposed in this thesis for the system identification of highly nonlinear PUMA 560 manipulator. Sequentially, the OCID method-based MPC are newly proposed. Finally, some comparisons and insights into the above three methods are also presented in the conclusions.

    中文摘要 I Abstract II Acknowledgement III Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 Chapter 2 State-Space Representation for PUMA 560 Manipulator 3 2.1 Optimal linearization 4 2.2 PUMA 560 links, joints, and their parameters 6 2.3. Mathematical modeling of PUMA 560 based on optimal linearization 10 Chapter 3 PUMA 560 System Parameters 12 3.1 Original PUMA 560 system parameters 13 3.2 PUMA 560 system parameters based on optimal linearization method 15 Chapter 4 On-line OCID Methods in Block Observer/Controller Canonical Forms for Highly Nonlinear Systems 25 4.1 Off-line observer/controller identification in general coordinate form for linear systems 26 4.2 Servo-control-oriented off-line OCID method for nonlinear systems 30 4.3 Servo-control-oriented on-line OCID methods in observer and controller canonical forms for nonlinear systems 33 Chapter 5 Illustrative Examples 39 5.1 Optimal linearization method for PUMA 560 manipulator 40 5.2 On-line OCID method for PUMA 560 manipulator 44 5.3 Off-line OCID method for PUMA 560 manipulator 48 Chapter 6 Conclusion 56 Reference 57 Appendix 59

    [1] Armstrong, B., Khatib, O., & Burdick, J., “The explicit dynamic model and inertial parameters of the PUMA 560 arm.” Proc. 1986 IEEE Conference on Robot and Automation, San Francisco, April 7-10, pp. 510-518, 1986.
    [2] David R., Marcelo A., Patricio V., Javier M., Jose L. C-M., Victor B., Omar G., Patricio R., Mayra E., Milton P., Monica H., “BRACON: Control system for a robotic arm with 6 degrees of freedom for education systems,” 2015 6th International Conference on Automation, Robotics and Applications (ICARA), pp. 358-363, 2015.
    [3] Ebrahimzadeh, F., Tsai, J.S.H., Liao, Y.T., Chung, M.C., Guo, S.M., Shieh, L.S., & Wang, L., “A new generalized optimal linear quadratic tracker with universal applications. Part 2: Discrete-time systems.” International Journal of Systems Science, vol. 48, no. 2, pp. 397-416, 2017.
    [4] Graham, C.G., Stefan, F.G., & Mario, E.S., Control System Design. Prentice Hall, New Jersey, 2000.
    [5] Guo, S. M., Shieh, L. S., Chen, G. R., and Lin, C. F., “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
    [6] Han C., Ma H., Zuo W., Chen S., Zhang X., “A General 6-DOF Industrial Robot Arm Control System Based on Linux and FPGA,” 2018 Chinese Control and Decision Conference (CCDC), pp. 1220-1225, 2018.
    [7] Hildreth, C., “A quadratic programming procedure.” Naval Research Logistics Quarterly, vol. 4, no. 1, pp. 79-85, 1957.
    [8] Juang, J.N., Applied System Identification, Prentice Hall, New Jersey, 1994.
    [9] K. S. Fu, R.C. Gonzalez, C.S.G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill Book Company, 1987.
    [10] Ljung, L., System Identification Theory for the User 2nd, Prentice-Hall, New Jersey, 1999.
    [11] Takuya H., Qingjiu H., “Control of position, attitude, force and moment of 6-DOF manipulator by impedance control,” 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 274-279, 2018.
    [12] Tsai, J.S.H., Su, T.J., Cheng, J.C., Lin, Y.Y., Giap, V.N., Guo, S.M., & Shieh, L.S., “Robust observer-based optimal linear quadratic tracker for five-degree-of-freedom sampled-data active magnetic bearing system.” International Journal of Systems Science, vol. 49, no. 6, pp. 1273-1299, 2018.
    [13] Tsai, J.S.H., Yu, T.H., Su, T.J., Guo, S.M., Shieh, L.S., & Canelon, J.I., “A novel on-line OCID method and its application to input-constrained active fault-tolerant tracker design for unknown nonlinear systems.” International Journal of Systems Science, 2019. (In revised)
    [14] Wang, J.H., Tsai, J.S.H., Huang, J.S., Guo, S.M., & Shieh, L.S., “A low-order active fault-tolerant state space self-tuner for the unknown sampled-data nonlinear singular system using OKID and modified ARMAX model-based system identification.” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1242-1274, 2013.
    [15] Wang, L.P., Model Predictive Control System Design and Implementation using MATLAB, Springer, London, 2009.
    [16] Wu, C.Y., Tsai, J.S.H., Guo, S.M., Shieh, L.S., Canelon, J.I., Ebrahimzadeh, F., & Wang, L., “A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems.” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 352, pp. 1119-1151, 2015.
    [17] Wu, C.Y., Tsai, J.S.H., Su, T. J., Guo, S.M., Shieh, L.S., & Yan, J.J., “Novel OCID method-based minimal realizations in block observable/controllable canonical forms and compensation improvement.” International Journal of Systems Science, vol. 48, no. 7, pp. 1522-1535, 2017.
    [18] Yang, Y., Yang, G.H., & Soh, Y.C. (2000). “Reliable control of discrete-time systems with actuator failure.” IEE Proceedings-Control Theory and Applications, vol. 147, no. 4, pp. 428-432.

    無法下載圖示 校內:2024-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE