| 研究生: |
陳威仲 Chen, Wei-Chung |
|---|---|
| 論文名稱: |
人形機器人之踢球平衡控制與多目標搜尋賽事之應用 Kicking Balance Control of Humanoid Robot and Its Application to Multi-goal Game |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 線性倒單擺模型 、人形機器人 、平衡控制 |
| 外文關鍵詞: | linear inverted pendulum model, humanoid robots, balance control |
| 相關次數: | 點閱:115 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨於探討與改善人形機器人在執行踢腳動作時的單腳平衡情況。人形機器人由於構造的設計上,在執行踢腳動作時會受到腳的質量影響而造成搖晃,不易簡化為無視雙腳質量的線性倒單擺模型,例如本實驗室研製之中型人形機器人David Junior便是如此,此因馬達分佈而導致腳部質量並非均勻或是可忽略之質量。故線性倒單擺模型應將腿部質量納入考量。本論文在簡化模型無法使用的情形下,必須先分析機器人在進行踢腳動作時,肢體與身體的受力分佈與情形,將此分析結果用於考慮腳部重量影響之線性倒單擺模型,外力影響亦需納入考慮,如踢球或踢牆情況時,會有一反作用力作用於機器人並影響其平衡狀況,此部分將以讀取位於機器人質心位置之加速度計數值的方式回授,再加入倒單擺模型計算考量中。本論文之驗證分為兩階段,先於Webots模擬軟體中模擬測試後,再將此結果用於實體機器人上,以比較理想與現實環境中的差異。實體機器人為本實驗室新研製的David Junior II人形機器人,並進行多目標搜尋之踢球賽事,以驗證本論文所提方法之效用與可行性。
A kicking balance control scheme for a humanoid robot is proposed in this thesis. The body of robot, such as the teen-sized humanoid robot David Junior, will shake when kicking with regard to the mass of legs. For this reason, the commonly used Linear Inverted Pendulum Model (LIPM) theory that neglects the mass of legs, may be not suitable to model the real structure of a humanoid robot. Hence, an extended LIPM considering the mass of legs and the external force to the robot is examined in this thesis. First, in an ideal condition, the torque balance for the robot will be discussed, and an extended LIPM including the torque by the mass of legs will be adopted at the same time. Second, the external force from the leg kicking a ball or wall will be detected by the accelerator setting at the position of center of the mass and included into the improved model. For evaluation, the proposed scheme is simulated first in the software Webots, and then it will be applied to a real humanoid robot, the David Junior II designed and implemented recently by our laboratory. Furthermore, David Junior II will play the multi-goal soccer game, where the robot is able to kick different color ball to the correct goal. The effectiveness and feasibility of the developed kicking balance control are demonstrated by this real-time game.
[1] Pepper, https://www.ald.softbankrobotics.com/en/cool-robots/pepper
[2] SoftBank, http://www.softbank.jp/robot/
[3] Hon Hai, http://www.foxconn.com.tw/
[4] J.-W. Heo and J.-H. Oh, “Biped Walking Pattern Generation Using an Analytic Method for a Unit Step With a Stationary Time Interval Between Steps,” IEEE Trans. Industrial Electronics, vol. 62, no. 2, pp. 1091-1100, Feb. 2015.
[5] B. Ugurlu and A. Kawamura, , “Bipedal Trajectory Generation Based on Combining Inertial Forces and Intrinsic Angular Momentum Rate Changes: Eulerian ZMP Resolution,” IEEE Trans. Robotics, vol. 28, no. 6, pp. 1406-1415, Dec. 2012.
[6] B. Ugurlu and A. Kawamura, “ZMP-Based Online Jumping Pattern Generation for a One-Legged Robot,” IEEE Trans. Industrial Electronics, vol. 57, no. 5, pp. 1701-1709, May 2010.
[7] P. Sardain and G. Bessonnet, “Forces Acting on a Biped Robot. Center of Pressure—Zero Moment Point,” IEEE Trans. Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 34, no. 5, pp. 630-637, Sep. 2004.
[8] S. Kajita, T. Nagasaki, K. Kaneko, and H. Hirukawa, “ZMP-based Biped Running Control,” IEEE Trans. Robotics, vol. 14, no. 2, pp. 63-72, Jun. 2007.
[9] K. Erbatur and O. Kurt, “Natural ZMP Trajectories for Biped Robot Reference Generation,” IEEE Trans. Industrial Electronics, vol. 56, no. 3, pp. 835-845, Mar. 2009.
[10] J. P. Ferreira, M.M. Crisóstomo, and A. P. Coimbra, “Adaptive PD Controller Modeled via Support Vector Regression for a Biped Robot,” IEEE Trans. Industrial Electronics, vol. 62, no. 4, pp. 2277-2286, April 2015.
[11] H.-K. Shin and B. K. Kim, “Energy-Efficient Gait Planning and Control for Biped Robots Utilizing Vertical Body Motion and Allowable ZMP Region,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1206-1215, Sep. 2013.
[12] H.-K. Shin and B. K. Kim, “Energy-Efficient Gait Planning and Control for Biped Robots Utilizing the Allowable ZMP Region,” IEEE Trans. Robotics, vol. 30, no. 4, pp. 986-993, Aug 2014.
[13] B.-J. Lee, D. Stonier, Y.-D. Kim, J.-K. Yoo, and J.-H. Kim, “Modifiable Walking Pattern of a Humanoid Robot by Using Allowable ZMP Variation,” IEEE Trans. Robotics, vol. 24, no. 4, pp. 917-925, Aug 2008.
[14] J. Or, “A hybrid CPG–ZMP Controller for the Real-time Balance of a Simulated Flexible Spine Humanoid Robot,” IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and reviews, vol. 39, no. 5, pp. 547-560, Sep. 2009.
[15] J. Yu, M. Tan, J. Chen, and J. Zhang, “A Survey on CPG-Inspired Control Models and System Implementation,” IEEE Trans. Neural Networks and Learning Systems, vol. 25, no. 3, pp. 441-456, Mar. 2014.
[16] Z. Chen and T. Iwasaki, “Circulant Synthesis of Central Pattern Generators with Application to Control of Rectifier Systems,” in Proc. IEEE Int. Conf. Intelligent Robots and Systems, 2001, vol. 1, pp. 239-246.
[17] T. Komura, A. Nagano, H. Leung, and Y. Shinagawa, “Simulating Pathological Gait Using the Enhanced Linear Inverted Pendulum Model,” IEEE Trans. Automatic Control, vol. 53, no. 1, pp. 273-286, Feb. 2008.
[18] T. Bliss, J. Werly, T. Iwasaki, and H. Bart-Smith, “Experimental Validation of Robust Resonance Entrainment for CPG-Controlled Tensegrity Structures,” IEEE Trans. Control Systems Technology, pp. 1-12, Feb. 2012.
[19] Y. Hu, J. Liang, and T. Wang, “Parameter Synthesis of Coupled Nonlinear Oscillators for CPG-Based Robotic Locomotion,” IEEE Trans. Industrial Electronics, vol. 61, no. 11, pp. 6183-6191, Nov. 2014.
[20] E. Ohashi, T. Aiko, T. Tsuji, H. Nishi, and K. Ohnishi, “Collision Avoidance Method of Humanoid Robot With Arm Force,” IEEE Trans. Industrial Electronics, vol. 54, no. 3, pp. 1632-1641, Jun. 2007.
[21] Y.-D. Hong and J.-H. Kim, “3-D Command State-Based Modifiable Bipedal Walking on Uneven Terrain,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 2, pp. 6183-6191, Apr. 2013.
[22] N. Motoi, T. Suzuki, and K. Ohnishi, “A Bipedal Locomotion Planning Based on Virtual Linear Inverted Pendulum Mode,” IEEE Trans. Industrial Electronics, vol. 56, no. 1, pp. 54-61, Jan. 2009.
[23] J. Zeng, H. Chen, and Y. Yin, “A Humanoid Robot Gait Planning and Its Stability Validation,” Journal of Computer and Communications, pp. 68-74, Feb. 2014.
[24] Y.-D. Hong, B.-J. Lee, and J.-H. Kim, “Command State-Based Modifiable Walking Pattern Generation on an Inclined Plane in Pitch and Roll Directions for Humanoid Robots,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 4, pp. 783-789, Aug. 2011.
[25] K. Suwanratchatamanee, M. Matsumoto, and S. Hashimoto, “Haptic Sensing Foot System for Humanoid Robot and Ground Recognition with One-Leg Balance,” IEEE Trans. Industrial Electronics, vol. 58, no. 8, pp. 3174-3186, Aug. 2011.
[26] T.-H. S. Li, Y.-T. Su, S.-H. Liu, J.-J. Hu, and C.-C. Chen, “Dynamic Balance Control for Biped Robot Walking Using Sensor Fusion, Kalman Filter, and Fuzzy Logic,” IEEE Trans. Industrial Electronics, vol. 59, no. 11, pp. 4394-4408, Nov. 2012.
[27] K. A. Stroud and Dexter J. Booth, Advanced Engineering Mathematics, 7th International ed. Cengage Learning, 2011.
[28] Webots, https://www.cyberbotics.com/
[29] FIRA, http://www.fira.net/
[30] RoboCup, http://www.robocup.org/
[31] RoboCup HumanoidLeagueRules2015_DRAFT_20141205-with-changes, http://www.robocuphumanoid.org/wp-content/uploads/HumanoidLeagueRules2015_DRAFT_20141205-with-changes.pdf
[32] Solidwork, http://www.solidworks.com/
[33] https://en.wikipedia.org/wiki/Brain
[34] Axiomtek, http://www.axiomtek.com.tw/
[35] STM32-F103ZET6, http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1031
[36] P. -C. Huang, Design and Implementation of a Series of Small-sized Humanoid Robots, Master Thesis, Department of Electrical Engineering, National Cheng Kung University, Jul. 2011.
[37] ROBOTIS, http://www.robotis.com/
[38] Arduino Mega, http://arduino.cc/en/Main/ArduinoBoardMega
[39] Arduino Due, http://arduino.cc/en/Main/ArduinoBoardDue
[40] ROBOTIS ZIG-100,
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
[41] Tekscan, http://www.tekscan.com/
[42] x-IMU, http://www.x-io.co.uk/products/x-imu/
[43] Microsoft Windows, http://windows.microsoft.com/zh-tw/windows/products
[44] Logitech Webcams,
http://www.logitech.com/zh-tw/webcam-communications/webcams
[45] C920,
http://support.logitech.com/zh_hk/product/hd-pro-webcam-c920#
[46] Kewele International, http://www.evcbattery.com/product_cg22956.html
[47] K. A. Stroud and Dexter J. Booth, Engineering Mathematics, 6th ed. Palgrave Macmillan, Jan. 2007.
[48] Y. –T. Ye, Design and Implementation of Gait Pattern Generation by Improved Linear Inverted Pendulum Model for Teen-Sized Humanoid Robot, Master Thesis, Department of Electrical Engineering, National Cheng Kung University, Jan. 2015.
[49] C.S.G. Lee, K.-S. Fu, and R. Gonzalez, Robotics: Control, Sensing, Vision and Intelligence, New York: McGraw-Hill Education, 1987.
[50] J. Han, Bipedal Walking for a Full-sized Humanoid Robot Utilizing Sinusoidal Feet Trajectories and Its Energy Consumption, Doctor Thesis, Department of Philosophy In Mechanical Engineering, Virginia Polytechnic Institute and State University, Apr. 2012.
[51] Matlab, http://www.mathworks.com/products/matlab/
[52] T.-H. S. Li, Y.-H. Wang, C.-C. Chen, and C.-J. Lin, “A Fast Color Information Setup Using EP-Like PSO for Manipulator Grasping Color Objects,” IEEE Trans. industrial informatics, vol. 10, no. 1, Feb. 2014.
[53] I. Yoon, S. Kim, D. Kim, Monson H. Hayes, and J.Paik, “Adaptive Defogging with Color Correction in the HSV Color Space for Consumer Surveillance System,” IEEE Trans. Consumer Electronics, vol. 58, no. 1, pp. 111-116, Feb. 2012.
[54] J. -F. Pekel, P. Ceccato, C. Vancutsem, K. Cressman, E. Vanbogaert, and P. Defourny, “Development and Application of Multi-Temporal Colorimetric Transformation to Monitor Vegetation in the Desert Locust Habitat,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 4, no. 2, pp. 318-326, Jun. 2011.
[55] A. S. Silva, F. M. Q. Severgnini, M. L. Oliveira, V. M. S. Mendes and Z. M. A. Peixoto, “Object Tracking by Color and Active Contour Models Segmentation,” IEEE Latin America Transactions, vol. 14, no. 3, pp. 111-116, Mar. 2016.
[56] X.-N. Zhang, J. Jiang, Z.–H. Liang, C.-L. Liu, “Skin Color Enhancement Based on Favorite Skin Color in HSV Color Space,” IEEE Trans. Consumer Electronics, vol. 56, no. 3, pp. 1789-1793, Aug. 2010.
[57] W. Hu and G. G. Yen, “Adaptive Multiobjective Particle Swarm Optimization Based on Parallel Cell Coordinate System,” IEEE Trans. Evolutionary Computation, vol. 19, no. 1, pp. 1-18, Feb. 2015.
[58] T. O. Ting, M. V. C. Rao, and C. K. Loo, “A Novel Approach for Unit Commitment Problem via an Effective Hybrid Particle Swarm Optimization,” IEEE Trans. Power Systems, vol. 21, no. 1, pp. 1095-1098, Feb. 2006.
[59] W.-C. Wu and M.-S. Tsai, “Application of Enhanced Integer Coded Particle Swarm Optimization for Distribution System Feeder Reconfiguration,” IEEE Trans. Power Systems, vol. 26, no. 3, pp. 1591-1599, Aug. 2011.
[60] B. Kristiansson and B. Lennartson, “Robust Tuning of PI and PID Controllers,” IEEE Control Systems, vol. 26, no.16, pp. 55-69, Feb. 2006.
[61] H.-B. Shin and J.-G. Park, “Anti-Windup PID Controller With Integral State Predictor for Variable-Speed Motor Drives,” IEEE Trans. Industrial Electronics, vol. 59, no. 3, pp. 1509-1516, Mar. 2012.
[62] L. Angel and J. Viola, “Design and Statistical Robustness Analysis of FOPID, IOPID and SIMC PID Controllers Applied to a Motor-Generator System,” IEEE Latin America Transactions, vol. 13, no. 12, pp. 3724-3734, Dec. 2015.
[63] M. J. Neath, A. K. Swain, U. K. M., and D. J. Thrimawithana, “An Optimal PID Controller for a Bidirectional Inductive Power Transfer System Using Multiobjective Genetic Algorithm,” IEEE Trans. Power Electronics, vol. 29, no. 3, pp. 1523-1531, Mar. 2014.
[64] T. H. Nguyen, H. Morishita, Y. Koyanagi,er, K. Izui, and S. Nishiwaki, “A Multi-Level Optimization Method Using PSO for the Optimal Design of an L-Shaped Folded Monopole Antenna Array,” IEEE Trans. Antennas and Propagation,, vol. 62, no. 1, pp. 206-215, Jan. 2014.
[65] W.-F. Leong and G. G. Yen, “PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives,” IEEE Trans. Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 38, no. 5, pp. 1270-1293, Oct. 2008.
[66] Q. Liu, C. Dang, and T. Huang, “A One-Layer Recurrent Neural Network for Real-Time Portfolio Optimization With Probability Criterion,” IEEE Trans. Cybernetics, vol. 43, no. 1, pp. 14-23, Feb. 2015.
[67] S. Qin and X. Xue, “A Two-Layer Recurrent Neural Network for Nonsmooth Convex Optimization Problems,” IEEE Trans. Neural Networks and Learning Systems, vol. 26, no. 6, pp. 1149-1160, Jun. 2015.