簡易檢索 / 詳目顯示

研究生: 沈巧竹
Shen, Chiao-Chu
論文名稱: 以鋅摻雜與熱處理改善溶膠凝膠法製備之Nd2Zr2O7薄膜的電阻轉換特性
Enhancement of Resistive Switching Properties of Sol-Gel Derived Nd2Zr2O7 Thin Films via Zinc Doping and Thermal Treatment
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 135
中文關鍵詞: 溶膠-凝膠法電阻切換特性RRAM摻雜金屬後退火處理
外文關鍵詞: Sol-gel, doping, resistive switching characteristics, RRAM, post-metallization annealing
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1前言 1 1.2研究目的與動機 2 第二章 文獻回顧 4 2.1 Nd2Zr2O7材料介紹 4 2.2記憶體介紹 6 2.2.1揮發性記憶體(Volatile Memory,VM) 6 2.2.2非揮發性記憶體 8 2.3 電阻式隨機存取記憶體(RRAM)介紹 13 2.3.1單極電阻轉換(Unipolar Resistive Switching, URS) 16 2.3.2雙極電阻轉換(Bipolar Resistive Switching, BRS) 17 2.4電阻轉換特性材料 17 2.4.2稀土族氧化物 19 2.4.3鈣鈦礦結構氧化物 21 2.5電阻轉換機制 22 2.5.1導電燈絲機制(Conductive Filament Mechanism) 23 2.5.2界面傳導機制(Interface-type conducting path) 26 2.6漏電流傳導機制 28 2.6.1 電極限制傳導機制(Electrode-limited) 28 2.6.2本體限制傳導機制(Bulk-limited) 31 第三章 實驗步驟與方法 36 3.1溶膠凝膠法(Sol-Gel)介紹 36 3.1.1薄膜製備 37 3.1.2低溫乾燥熱處理 38 3.1.3高溫退火熱處理 39 3.2實驗流程 39 3.2.1使用藥品 39 3.2.2 Sol-Gel調配 40 3.2.3 ITO 玻璃基板清洗 40 3.2.4薄膜塗佈與乾燥 40 3.2.5薄膜熱處理 41 3.2.6電子束蒸鍍 41 3.2.7金屬後退火 41 3.3實驗設備 43 3.3.1磁石加熱攪拌器 43 3.3.2旋轉塗佈機 43 3.3.3爐管 43 3.3.4電子束蒸鍍機 44 3.4量測與分析儀器 44 3.4.1低掠角薄膜X光繞射儀 45 3.4.2高解析掃描式電子顯微鏡 47 3.4.3 多功能原子力顯微鏡 48 3.4.4 X光光電子能譜儀 49 3.4.5高解析穿透式電子顯微鏡 49 3.4.6半導體參數分析儀 50 第四章 結果與討論 51 4.1薄膜分析 51 4.1.1 XRD晶相分析 51 4.1.2 SEM表面與剖面分析 51 4.1.3 AFM表面形貌圖 54 4.1.4 XPS表面化學分析 55 4.1.5 TEM微區域結構分析 58 4.2 Nd2Zr2O7電性分析 59 4.2.1 NZO薄膜厚度對Al/NZO/ITO電阻轉換特性之影響 59 4.2.2 退火溫度對Al/NZO/ITO電阻轉換特性之影響 67 4.2.3 金屬後退火對Al/NZO/ITO電阻轉換特性之影響 72 4.3 Nd2(1-X)Zn2xZr2O7薄膜分析 74 4.3.1 XRD晶相分析 74 4.3.2 SEM表面分析 75 4.3.3 AFM表面形貌圖 76 4.3.4 XPS表面化學分析 77 4.3.5 TEM微區域結構分析 81 4.4 Nd2(1-X)Zn2xZr2O7電性分析 82 4.4.1摻雜濃度對Al/ Nd2(1-X)Zn2xZr2O7/ITO電阻轉換特性之影響 82 4.4.2退火溫度對Al/ Nd2(1-X)Zn2xZr2O7/ITO電阻轉換特性之影響 90 4.4.3 金屬後退火對Al/ Nd2(1-X)Zn2xZr2O7/ITO電阻轉換特性之影響 95 4.5元件之導電燈絲模型 99 4.6 元件導通機制 102 4.7比較與討論 104 第五章 結論 106 參考文獻 108

    [1] S. Zhu et al., "Intelligent computing: the latest advances, challenges, and future," Intelligent Computing, vol. 2, p. 0006, 2023.
    [2] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, "Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications," Nanoscale research letters, vol. 15, pp. 1-26, 2020.
    [3] Z. Swaidan, R. Kanj, J. El Hajj, E. Saad, and F. Kurdahi, "Rram endurance and retention: Challenges, opportunities and implications on reliable design," in 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2019: IEEE, pp. 402-405.
    [4] G. Molas et al., "Resistive memories (RRAM) variability: challenges and solutions," ECS Transactions, vol. 86, no. 3, p. 35, 2018.
    [5] D.-W. Kim et al., "Enhanced switching reliability of sol–gel-processed Y2O3 RRAM devices based on Y2O3 surface roughness-induced local electric field," Materials, vol. 15, no. 5, p. 1943, 2022.
    [6] K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, and C.-W. Cheng, "The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device," Microelectronics Reliability, vol. 50, no. 5, pp. 670-673, 2010.
    [7] H. Zhao, H. Tu, F. Wei, Y. Xiong, X. Zhang, and J. Du, "Characteristics and mechanism of nano‐polycrystalline La2O3 thin‐film resistance switching memory," physica status solidi (RRL)–Rapid Research Letters, vol. 7, no. 11, pp. 1005-1008, 2013.
    [8] S.-Y. Wang, C.-H. Tsai, D.-Y. Lee, C.-Y. Lin, C.-C. Lin, and T.-Y. Tseng, "Improved resistive switching properties of Ti/ZrO2/Pt memory devices for RRAM application," Microelectronic engineering, vol. 88, no. 7, pp. 1628-1632, 2011.
    [9] H. Y. Jeong, Y. I. Kim, J. Y. Lee, and S.-Y. Choi, "A low-temperature-grown TiO2-based device for the flexible stacked RRAM application," Nanotechnology, vol. 21, no. 11, p. 115203, 2010.
    [10] Z. Yong et al., "Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineering," Applied Surface Science, vol. 551, p. 149386, 2021.
    [11] H.-C. Tai and C.-L. Huang, "Investigation of resistive switching properties in reliable, forming-free RRAM devices based on amorphous Sm2Zr2O7 thin films," Materials Science in Semiconductor Processing, vol. 195, p. 109596, 2025.
    [12] C.-W. Lin, R. W. Chuang, and C.-L. Huang, "Optimizing the resistive switching performance of sputter-deposited Gd2Hf2O7 thin films via thermal treatment," Materials Science in Semiconductor Processing, vol. 192, p. 109443, 2025.
    [13] J. L. Payne, M. G. Tucker, and I. R. Evans, "From fluorite to pyrochlore: characterisation of local and average structure of neodymium zirconate, Nd2Zr2O7," Journal of Solid State Chemistry, vol. 205, pp. 29-34, 2013.
    [14] A. Rodrigues, Y. Santos, C. Rodrigues, and M. A. Macêdo, "Al2O3 thin film multilayer structure for application in RRAM devices," Solid-State Electronics, vol. 149, pp. 1-5, 2018.
    [15] J. Xu et al., "Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd 2 Zr 2 O 7," Physical Review B, vol. 92, no. 22, p. 224430, 2015.
    [16] R. Bez and A. Pirovano, "Non-volatile memory technologies: emerging concepts and new materials," Materials Science in Semiconductor Processing, vol. 7, no. 4-6, pp. 349-355, 2004.
    [17] Z. Liu and V. Kursun, "Characterization of a novel nine-transistor SRAM cell," IEEE transactions on very large scale integration (VLSI) systems, vol. 16, no. 4, pp. 488-492, 2008.
    [18] V. Gupta and M. Anis, "Statistical design of the 6T SRAM bit cell," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 93-104, 2009.
    [19] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, "A performance comparison of contemporary DRAM architectures," in Proceedings of the 26th annual international symposium on Computer architecture, 1999, pp. 222-233.
    [20] W. Liu, Z. Zhang, M. Li, and Z. Liu, "A trustworthy key generation prototype based on DDR3 PUF for wireless sensor networks," Sensors, vol. 14, no. 7, pp. 11542-11556, 2014.
    [21] A. Chen, "A review of emerging non-volatile memory (NVM) technologies and applications," Solid-State Electronics, vol. 125, pp. 25-38, 2016/11/01/ 2016, doi: https://doi.org/10.1016/j.sse.2016.07.006.
    [22] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, "Introduction to flash memory," Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, 2003.
    [23] L. Crippa, R. Micheloni, I. Motta, and M. Sangalli, "Nonvolatile memories: NOR vs. NAND architectures," in Memories in Wireless Systems: Springer, 2008, pp. 29-53.
    [24] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, "Flash memory cells-an overview," Proceedings of the IEEE, vol. 85, no. 8, pp. 1248-1271, 2002.
    [25] H.-S. P. Wong et al., "Metal–oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
    [26] S. Hatayama et al., "Inverse resistance change Cr2Ge2Te6-based PCRAM enabling ultralow-energy amorphization," ACS Applied Materials & Interfaces, vol. 10, no. 3, pp. 2725-2734, 2018.
    [27] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, "A low power phase-change random access memory using a data-comparison write scheme," in 2007 IEEE International Symposium on Circuits and Systems (ISCAS), 2007: IEEE, pp. 3014-3017.
    [28] S. Tehrani, J. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerren, "Progress and outlook for MRAM technology," IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 2814-2819, 2002.
    [29] R. Sbiaa, H. Meng, and S. Piramanayagam, "Materials with perpendicular magnetic anisotropy for magnetic random access memory," physica status solidi (RRL)–Rapid Research Letters, vol. 5, no. 12, pp. 413-419, 2011.
    [30] T. Mikolajick et al., "FeRAM technology for high density applications," Microelectronics Reliability, vol. 41, no. 7, pp. 947-950, 2001.
    [31] Y. Kato et al., "Overview and future challenge of ferroelectric random access memory technologies," Japanese Journal of Applied Physics, vol. 46, no. 4S, p. 2157, 2007.
    [32] J. Xu et al., "NbOx RRAM performance enhancement by surface modification with Au nanoparticles," Vacuum, vol. 227, p. 113422, 2024.
    [33] W.-Y. Liu, C.-C. Wu, T.-H. Hsu, and C.-L. Huang, "Enhancing the resistive switching properties of Nd2Ti2O7 thin films through Ca-doping and thermal treatments," Journal of Alloys and Compounds, vol. 1010, p. 177083, 2025.
    [34] H. Yuan, T. Wan, and H. Bai, "Resistive switching characteristic of cu electrode-based RRAM device," Electronics, vol. 12, no. 6, p. 1471, 2023.
    [35] B. Traoré, P. Blaise, E. Vianello, L. Perniola, B. De Salvo, and Y. Nishi, "HfO 2-based RRAM: Electrode effects, Ti/HfO 2 interface, charge injection, and oxygen (O) defects diffusion through experiment and ab initio calculations," IEEE Transactions on Electron Devices, vol. 63, no. 1, pp. 360-368, 2015.
    [36] W. Wang et al., "Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDs-based RRAM," IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4884-4890, 2020.
    [37] S. Rajarathinam, U. Ganguly, and N. Venkataramani, "Impact of oxygen partial pressure on resistive switching characteristics of PLD deposited ZnFe2O4 thin films for RRAM devices," Ceramics International, vol. 48, no. 6, pp. 7876-7884, 2022/03/15/ 2022, doi: https://doi.org/10.1016/j.ceramint.2021.11.335.
    [38] B. Ku, Y. Abbas, A. S. Sokolov, and C. Choi, "Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors," Journal of Alloys and Compounds, vol. 735, pp. 1181-1188, 2018/02/25/ 2018, doi: https://doi.org/10.1016/j.jallcom.2017.11.267.
    [39] C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, C.-C. Lin, and T.-Y. Tseng, "Memory effect of RF sputtered ZrO2 thin films," Thin Solid Films, vol. 516, no. 2, pp. 444-448, 2007/12/03/ 2007, doi: https://doi.org/10.1016/j.tsf.2007.07.140.
    [40] A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, and G. Bersuker, "Microscopic modeling of HfO x RRAM operations: From forming to switching," IEEE Transactions on electron devices, vol. 62, no. 6, pp. 1998-2006, 2015.
    [41] P.-Y. Chen and S. Yu, "Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design," IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4022-4028, 2015.
    [42] K.-H. Chen et al., "Bipolar switching properties and electrical conduction mechanism of manganese oxide RRAM devices," Ceramics International, vol. 43, pp. S253-S257, 2017.
    [43] X. Tran, W. Zhu, W. Liu, Y. Yeo, B. Nguyen, and H. Yu, "Self-Selection Unipolar HfOx Based RRAM," IEEE transactions on electron devices, vol. 60, no. 1, pp. 391-395, 2012.
    [44] W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Applied Physics Letters, vol. 92, no. 2, 2008.
    [45] M. Rozenberg, M. J. Sanchez, R. Weht, C. Acha, F. Gomez-Marlasca, and P. Levy, "Mechanism for bipolar resistive switching in transition-metal oxides," Physical Review B—Condensed Matter and Materials Physics, vol. 81, no. 11, p. 115101, 2010.
    [46] B. Gao et al., "Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology," in 2009 Symposium on VLSI Technology, 15-17 June 2009 2009, pp. 30-31.
    [47] F. M. Puglisi, P. Pavan, A. Padovani, and L. Larcher, "A study on HfO2 RRAM in HRS based on I–V and RTN analysis," Solid-State Electronics, vol. 102, pp. 69-75, 2014.
    [48] H.-Y. Lee et al., "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," in 2008 IEEE International Electron Devices Meeting, 2008: IEEE, pp. 1-4.
    [49] L. R. Morss, "Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions," Chemical Reviews, vol. 76, no. 6, pp. 827-841, 1976.
    [50] K. Kim et al., "Thickness dependence of resistive switching characteristics of the sol–gel processed Y2O3 RRAM devices," Semiconductor Science and Technology, vol. 38, no. 4, p. 045002, 2023.
    [51] M. A. Peña and J. Fierro, "Chemical structures and performance of perovskite oxides," Chemical reviews, vol. 101, no. 7, pp. 1981-2018, 2001.
    [52] J. Chen et al., "High-performance perovskite memristor by integrating a tip-shape contact," Journal of Materials Chemistry C, vol. 9, no. 43, pp. 15435-15444, 2021.
    [53] X. Zhang et al., "Effect of Joule heating on resistive switching characteristic in AlO x cells made by thermal oxidation formation," Nanoscale Research Letters, vol. 15, pp. 1-8, 2020.
    [54] Y. Huang et al., "Amorphous ZnO based resistive random access memory," RSC advances, vol. 6, no. 22, pp. 17867-17872, 2016.
    [55] L. Hu, W. Han, and H. Wang, "Resistive switching and synaptic learning performance of a TiO2 thin film based device prepared by sol–gel and spin coating techniques," Nanotechnology, vol. 31, no. 15, p. 155202, 2020.
    [56] E. W. Lim and R. Ismail, "Conduction mechanism of valence change resistive switching memory: A survey," Electronics, vol. 4, no. 3, pp. 586-613, 2015.
    [57] E. O. Kane, "Theory of tunneling," Journal of applied Physics, vol. 32, no. 1, pp. 83-91, 1961.
    [58] J. G. Simmons, "Transition from electrode-limited to bulk-limited conduction processes in metal-insulator-metal systems," Physical Review, vol. 166, no. 3, p. 912, 1968.
    [59] N. Croitoru, M. Lazarescu, C. Popescu, M. Telnic, and L. Vescan, "Ohmic and non-ohmic conduction in some amorphous semiconductors," Journal of Non-Crystalline Solids, vol. 8, pp. 781-786, 1972.
    [60] F.-C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, vol. 2014, no. 1, p. 578168, 2014.
    [61] M. A. Lampert, "Simplified theory of space-charge-limited currents in an insulator with traps," Physical Review, vol. 103, no. 6, p. 1648, 1956.
    [62] R. M. Hill, "Poole-Frenkel conduction in amorphous solids," The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 23, no. 181, pp. 59-86, 1971/01/01 1971, doi: 10.1080/14786437108216365.
    [63] L. Klein, M. Aparicio, and A. Jitianu, Handbook of sol-gel science and technology: processing, characterization and applications. Springer Nature, 2018.
    [64] E. I. Morosanova, "Silica and silica–titania sol–gel materials: Synthesis and analytical application," Talanta, vol. 102, pp. 114-122, 2012.
    [65] K. Norrman, A. Ghanbari-Siahkali, and N. Larsen, "6 Studies of spin-coated polymer films," Annual Reports Section" C"(Physical Chemistry), vol. 101, pp. 174-201, 2005.
    [66] M. Tyona, "A theoritical study on spin coating technique," Advances in materials Research, vol. 2, no. 4, p. 195, 2013.
    [67] R. F. Tester and S. J. Debon, "Annealing of starch—A review," International journal of biological macromolecules, vol. 27, no. 1, pp. 1-12, 2000.
    [68] B. J. Inkson, "2 - Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization," in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, G. Hübschen, I. Altpeter, R. Tschuncky, and H.-G. Herrmann Eds.: Woodhead Publishing, 2016, pp. 17-43.
    [69] J. D. Andrade, "X-ray Photoelectron Spectroscopy (XPS)," in Surface and Interfacial Aspects of Biomedical Polymers: Volume 1 Surface Chemistry and Physics, J. D. Andrade Ed. Boston, MA: Springer US, 1985, pp. 105-195.
    [70] M. Seah, "The quantitative analysis of surfaces by XPS: A review," Surface and Interface Analysis, vol. 2, no. 6, pp. 222-239, 1980.
    [71] C. Y. Tang and Z. Yang, "Chapter 8 - Transmission Electron Microscopy (TEM)," in Membrane Characterization, N. Hilal, A. F. Ismail, T. Matsuura, and D. Oatley-Radcliffe Eds.: Elsevier, 2017, pp. 145-159.
    [72] K.-H. Chen, M.-C. Kao, S.-J. Huang, and J.-Z. Li, "Bipolar switching properties of neodymium oxide RRAM devices using by a low temperature improvement method," Materials, vol. 10, no. 12, p. 1415, 2017.
    [73] S. Lee et al., "Impact of device area and film thickness on performance of sol-gel processed ZrO2 RRAM," IEEE Electron Device Letters, vol. 39, no. 5, pp. 668-671, 2018.
    [74] S. Yan et al., "Effects of Zn doping concentration on resistive switching characteristics in Ag/La1− x Zn x MnO 3/p+-Si devices," Bulletin of Materials Science, vol. 39, no. 7, pp. 1665-1670, 2016.
    [75] Y. Wang, H. Liu, X. Wang, and L. Zhao, "Impacts of Cu-doping on the performance of La-based RRAM devices," Nanoscale Research Letters, vol. 14, no. 1, p. 224, 2019.
    [76] Z. Wang et al., "Localized metal doping effect on switching behaviors of TaO x-based RRAM device," in 2016 16th Non-Volatile Memory Technology Symposium (NVMTS), 2016: IEEE, pp. 1-3.

    無法下載圖示 校內:2030-07-16公開
    校外:2030-07-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE