| 研究生: |
蕭有志 Hsiao, Yu-Chih |
|---|---|
| 論文名稱: |
應力與覆蓋層效應對於二氧化鉿薄膜的影響 Effects of constraint annealing and capping layer on Si/HfO2 |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 共同指導教授: |
呂正傑
leu, Ching-Chich |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 薄膜應力 、覆蓋層 、高介電材料 、結晶 、介面層 |
| 外文關鍵詞: | stress, capping layer, high-K, crystallization, interfacial layer |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討應力對於MOS結構中二氧化鉿薄膜特性的影響。從實驗成果觀察到應力的施加造成二氧化鉿薄膜結晶特性提升,並衍生出其影響與覆蓋層的形成有關,因此在論文後半段探討覆蓋層對於二氧化鉿薄膜結晶性的探討。
由實驗結果得知,壓應力與張應力對於二氧化鉿薄膜有相似的作用,此應力的效果為抑制二氧化鉿與矽基板中的介面層成長,並且伴隨著減緩介面層成長所可能造成的矽向外擴散。我們猜測其原因與應力加強退火過程中原子的重新排列有關係,導致形成較低氧空缺濃度的二氧化鉿薄膜,而此二氧化鉿薄膜有效抑制氧氣擴散,進而減緩介面層成長和矽向外擴散。
此外,本論文證明二氧化鉿的結晶特性與外加應力的關聯性,連結於矽向外擴散所形成二氧化矽的覆蓋層。二氧化鉿與矽基板中間的介面層在退火過程中增厚,由此介面層將發射矽原子至二氧化鉿薄膜表面,而形成二氧化矽覆蓋層而此自發性形成的二氧化矽的覆蓋層會抑制二氧化鉿的結晶性。
In this thesis, the stress effect of HfO2 insulating layer within the MOS structure has been discussed. From the experiment result, we can see that the crystallization of HfO2 was enhanced by constrained annealing, which inhibited the formation of capping layer on HfO2. Therefore, the further discussion of capping layer on HfO2 would be discussed in details in the second part of this thesis.
The experiment has shown that the compressive and tensile stresses have the similar effect to HfO2. The constraint stress inhibited further growth of the interfacial layer (IL) between HfO2 and Si, suppressing the IL-growth-induced Si outward emission. This fact was associated with atomic rearrangement that was induced during constrained annealing, resulting in the formation of a robust HfO2 layer with low oxygen vacancy. Such an HfO2 layer effectively suppressed the inward diffusion of oxygen, the IL growth and the Si out-diffusion.
In addition, we can see evidence of the relationship of crystallization and the forms of SiO2 capping layer when HfO2 is mechanically constrained. During annealing, the growth of interfacial layer in Si/HfO2 led to an out-emission of Si from interface to film surface and self-formed a SiO2 capping layer. The crystallization of HfO2 film on Si substrate was suppressed due to the self-capping effect.
[1] Hyoungsub Kim, 2003, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition”, Appl. Phys. Lett. Vol.82, pp. 106
[2] C. Claeys, E. Simoena, S. Put, G. Giusi, F. Crupi d, 2008, “Impact strain engineering on gate stack quality and reliability ” Solid-State Electronic, 52, 1115
[3] Peter Zurcher, C.J. Tracy, R.E. Jones Jr, P. Alluria, P.Y. Chu, B. Jiang, M. Kim, B.M. Melnick, M.V. Raymond, D. Roberts, T.P. Remmel, T.L. Tsai, B.E. White, S. Zafar and S.J. Gillespie , 1998, ‘‘Barium Strontium Titanate Capacitors for Embedded Dram ” Mater. Res. Soc. Symp. Proc. 541, 11
[4] K.L. Saenger, A. Grill, T.M. Shaw, D.A. Neumayer, Chenting Lin and Y.Y. Wang, 1998, ‘‘Stability and Oxidation Behavior of Ir Thin Film Electrodes on Si and SiO2’’ Mater. Res. Soc. Symp.Proc. 541, 89
[5] H. J. Hubbard and D. G. Schlom, 1996, ‘‘Thermodynamic stability of binary oxides in contact with silicon’’ J. Mater. Res. 11, 2757
[6] J. Robertson, 2004, ‘‘High dielectric constant oxides’’ Eur. Phys. J. Appl. Phys. 28 , 265
[7] J. Robertson, 2000, ‘‘Band offsets of wide-band-gap oxides and implications for future electronic devices’’J. Vac. Sci. Technol. B18, 1785
[8] Y. Hoshino, Y. Kido, K. Yamamoto, S. Hayashi, and M. Niwa, 2002 ,‘‘Characterization and control of the HfO2/Si(001) interfaces’’ Appl. Phys. Lett. Vol.81, 2650
[9] B. E. Deal, 1980, ‘‘Standardized Terminology for Oxide Charge Associated with with Thermally Oxidized Silicon’’ IEEE Trans. Electron Devices, ED-27,606
[10] X. Feng, Y. Huang, A. J. Rosakis, 2007, ‘‘On the Stoney Formula for a Thin Film/Substrate System With Nonuniform Substrate Thickness’’ Transactions of the ASME Vol.74,1276
[11] Ma C.H., Huang J.H. and Chen H., 2002, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films 418, pp.73-78
[12] Noyan I.C., Jerome C.B., 1987, “Residual Stress: Measurement by Diffraction and Interpretation”, Springer Verlag, Ch6
[13] Anthony E. Ennos, 1966, “Stresses developed in optical film coatings”, Applied Optics, Vol.5, pp.51.
[14] H. K. Pulker, 1979, “Stress measurement and calculation for vacuum deposited MgF2 films”, Thin Solid Film, 58 , pp.371-376.
[15] Chuen-Lin Tien and Hung-Da Zeng, 2010, ‘‘Measuring residual stress of anisotropic thin film by fast Fourier transform’’ OPTICS EXPRESS, Vol. 18, No. 16, 16594.
[16] C. M. Drum,1969, ‘‘TwymanGreen Interferometry for Measurements of Stresses in Thin Films on Optically Flat Silicon Substrates’’ Rev. Sci. Instrum. 40, 853
[17] E. Kobeda and E.A. Irene,1958, ‘‘A measurement of intrinsic SiO2 film stress resulting from low temperature thermal oxidation of Si’’ J. Vac, Sci. Technol, B4 , 3
[18] H. Kageshima, Kenji Shiraishi, 1998, ‘‘Silicon-kicking-out mechanism in initial oxide formation on hydrogen-terminated silicon (100) surfaces’’ Appl. Surf. Sci. 130–132, 176
[19] Y. Hoshino, Y. Kido, K. Yamamoto, S. Hayashi, and M. Niwa, 2002, ‘‘Characterization and control of the HfO2/Si(001) interfaces’’ Appl. Phys. Lett. 81, 2650
[20] Zhao Ming, Kaoru Nakajima, Motofumi Suzuki, Kenji Kimura, Masashi Uematsu, Kazuyoshi Torii, Satoshi Kamiyama, Yasuo Nara, and Keisaku Yamada, 2006, ‘‘Si emission from the SiO2/Si interface during the growth of SiO2 in the HfO2/SiO2/Si structure’’ Appl. Phys. Lett. 88, 153516.
[21] Tae Joo Park, Jeong Hwan Kim, Jae Hyuck Jang, Choong-Ki Lee, Kwang Duk Na, Sang Young Lee, Hyung-Suk Jung, Miyoung Kim, Seungwu Han, Cheol Seong Hwang, 2010, ‘‘Reduction of Electrical Defects in Atomic Layer Deposited HfO2 Films by Al Doping’’ Chem. Mater., Vol. 22,4175
[22] T. S. Böscke, S. Govindarajan, P. D. Kirsch, P. Y. Hung, C. Krug, B. H. Lee, J. Heitmann, U. Schröder, G. Pant, B. E. Gnade, and W. H. Krautschneider , 2007, ‘‘Stabilization of higher-κ tetragonal HfO2 by SiO2 admixture enabling thermally stable metal-insulator-metal capacitors’’ Appl. Phys. Lett. 91, 072902
[23] Alexandra Navrotsky, 2003, ‘‘Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations’’ Mater. Res. Soc. Symp. Proc.745, N1.5.1
[24] S. Migita, Y. Watanabe, H. Ota, H. Ito, Y. Kamimuta, T. Nabatame, A. Toriumi, 2008, ‘‘Design and demonstration of very high-k (k∼50) HfO2 for ultra-scaled Si CMOS’’ Symp. VLSI Tech. Dig., p. 152
[25] Y. Watanabe , H. Ota , S. Migita , Y. Kamimuta , K. Iwamoto, M. Takahashi , A. Ogawa , H. Ito , T. Nabatame and A. Toriumi, 2007, ‘‘Achievement of Higher-k and High-Φ in Phase Controlled HfO2 Film Using Post Gate Electrode Deposition Annealing Hf-Based High-k Materials’’ ECS Trans. Vol. 11(4), p. 35 (2007)
[26] Manisha Kundu, Noriyuki Miyata, Toshihide Nabatame, Tsuyoshi Horikawa, Masakazu Ichikawa, 2003, ‘‘Effect of Al2O3 capping layer on suppression of interfacial SiO2 growth in HfO2/ultrathin SiO2/Si(001) structure’’ Appl. Phys. Lett., Vol. 82, 3442
[27] Akiyama, K, Tsukuba, Wang, W. Mizubayashi, W. Ikeda, M, 2008, ‘‘Roles of oxygen vacancy in HfO2/ultra-thin SiO2 gate stacks - Comprehensive understanding of VFB roll-off -’’ VLSI Tech. Dig., p.80
[28] Morita, Yukinori; Migita, Shinji; Mizubayashi, Wataru; Ota, Hiroyuki., 2011, ‘‘Fabrication of Direct-Contact Higher-k HfO2 Gate Stacks by Oxygen-Controlled Cap Post-Deposition Annealing’’ Jpn. J. Appl. Phys. 50 10PG01
[29] John Robertson , 2008, ‘‘Maximizing performance for higher K gate dielectrics’’ J. Appl. Phys. 104, 124111
[30] JCPDS Cards number 34-0104
[31] Hiroyuki Kageshima, Kenji Shiraishi and Masashi Uematsu, 1999, ‘‘Universal Theory of Si Oxidation Rate and Importance of Interfacial Si Emission’’ Jpn. J. Appl. Phys. Vol. 38, pp. L971–L974
[32] C. Driemeier, E. P. Gusev, and I. J. Baumvol, 2006, ‘‘Room temperature interactions of water vapor with HfO2 films on Si’’ Appl. Phys. Lett. 88, 201901
[33] Vishwanathan Rangarajan, Harish Bhandari, Tonya M Klein, 2002, ‘‘Comparison of hafnium silicate thin films on silicon (100) deposited using thermal and plasma enhanced metal organic chemical vapor deposition’’ Thin Solid Films, 419,p1-4
[34] M.-H. Cho, Y. S. Roh, C. N. Whang, and K. Jeong, S. W. Nahm, D.-H. Ko, J. H. Lee, N. I. Lee, K. Fujihara, 2002, ‘‘Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition’’ Appl. Phys. Lett., Vol. 81,472
[35] K. P. Bastos, J. Morais, L. Miotti, G. V. Soares, R. P. Pezzi, R. C. G. da Silva, H. Boudinov, I. J. R. Baumvol, R. I. Hegde, H.-H. Tseng, and P. J. Tobin, 2004, ‘‘Thermal Stability and Electrical Characterization of HfO2 Films on Thermally Nitrided Si’’ Journal of The Electrochemical Society, 151,F153-6
[36] Kyu-Jeong Choi, Jong-Bong Park and Soon-Gil Yoon, 2003, ‘‘Control of the Interfacial Layer Thickness in Hafnium Oxide Gate Dielectric Grown by PECVD’’ Journal of The Electrochemical Society Vol. 150, F75-77
[37] S. Suzer, S. Sayan, M. M. Banaszak Holl, E. Garfunkel, Z. Hussain and N. M. Hamdan, 2003, ‘‘Soft x-ray photoemission studies of Hf oxidation’’ J. Vac. Sci. Technol., A 21, 106-9
[38] Ulrich Brossmann, Roland Würschum, Ulf Södervall, and Hans-Eckhardt Schaefer, 1999, ‘‘Oxygen diffusion in ultrafine grained monoclinic ZrO2 ’’ J. Appl. Phys., 85, 7646-54
[39]C. Tang and R. Ramprasad, 2008, ‘‘A study of Hf vacancies at Si:HfO2 heterojunctions’’ Appl. Phys. Lett. 92, 152911
[40]Lulu Zhang, Shin-ya Terauchi, Yasushi Azuma, and Toshiyuki Fujimoto,2007, ‘‘Interdiffusion studies for HfO2 /Si by GIXR and XPS’’ Journal of Physics: Conference Series 83, 012033
[41] H. S. Chang, H. Hwang, M. H. Cho, H. K. Kim and D. W. Moon, 2004, “Atomic transport and stability during annealing of HfO2 and HfAlO with an ultrathin layer of SiO2 on Si(001)” J. Vac. Sci. Technol. A 22, 165-9
[42] C.M. HSU, 2003, ‘‘Stress Effect on Aluminum-Induced Crystallization of Sputtered Amorphous Silicon Thin Films’’ Jpn. J. Appl. Phys. Vol. 42, 4928-4934
[43] C. C. Leu, S. T. Chen, F. K. Liu, and C. X. Wu, 2012, “Improved performance of nanocrystal memory for aminosilane-mediated Au–SiO2 embedded core–shell nanoparticles” J.Mater. Chem., 22, 2089-98.
[44] M. Chen, D. Wayne Goodman, 2006, “The structure of monolayer SiO2 on Mo(1 1 2): A 2-D [Si–O–Si] network or isolated [SiO4 ] units? ” Surface Science, 600, L255-9.
[45]K. T. Queeney Weldon, M.K. Chang, J.P. Chabal, Y.J., 2000, ‘‘Infrared spectroscopic analysis of the Si/SiO2 interface structure of thermally oxidized silicon’’ J. Appl. Phys., Vol. 87, 1322
[46] R. B. Van Dover, M. L. Green, L. Manchanda, L. F. Schneemeyer, and T. Siegrist, 2003,“Composition-dependent crystallization of alternative gate dielectrics” Appl. Phys. Lett. 83, 1459
[47] MH Cho, CY Kim, Moon K, KB Chung, CJ Yim, DH Ko, HC Sohn, H Jeon., 2008,“Change in the interfacial reaction of Hf-silicate film as a function of thickness and stoichiometry’’ J. Chem. Phys. 129, 034705
[48]T. S. Böscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramírez-Bon , 2009, ‘‘Increasing permittivity in HfZrO thin films by surface manipulation” Appl. Phys. Lett. 95, 052904
校內:2018-08-16公開