簡易檢索 / 詳目顯示

研究生: 陳信宇
Chen, Xin-Yu
論文名稱: 具切換突波補償技術之14位元10GS/s數位類比轉換器
A 14-bit 10GS/s DAC with Switching Glitch Compensation
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 105
中文關鍵詞: 暫態非線性補償輸出阻抗補償電流汲取式數位類比轉換器
外文關鍵詞: Transient non-linearity compensation, output impedance compensation, current-steering, digital-to-analog converter
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實現一個14位元10GS/s之電流汲取式數位類比轉換器,並提出一突波補償技術解決非歸零式數位類比轉換器在輸出訊號發生變化時所產生之暫態非線性。藉由即時計算相鄰兩輸入碼之間的變化,並利用一輔助數位類比轉換器產生補償突波,可大幅降低高速運作時,碼相依突波對數位類比轉換器輸出信號線性度的影響。此外,為改善輸出電流源之間的匹配,本論文採用實驗室先前所提出之二元權重選取之動態匹配技術以及同心平行四邊形繞線法,改善電流源間的隨機與梯度不匹配所產生之非線性。最後,使用實驗室先前所提出的輸出阻抗補償技術,調整輸出點所並聯之電阻,可大幅減少單位電流源所需的輸出阻抗與所需成本,使得本論文所提出之數位類比轉換器在較低的操作電壓下依然保持良好的輸出信號線性。

    此電流汲取式數位類比轉換器採用台積電 28奈米,1P10M互補金氧半導體製程,整個晶片主動面積約為0.1平方毫米。量測結果顯示,此類比數為轉換器可在10GS/s的操作速度下,可在奈奎氏頻寬內達成無雜散動態範圍數值高於64dB。此外與近年一流文獻相比,本作品之綜合性能指標堪稱世界最佳。

    A 14-bit 10GS/s current-steering digital-to-analog converter (DAC) is realized to overcome three non-linearity sources in this thesis. Firstly, to reduce the switching transient non-linearity when the output signals of non-return-to-zero (NRZ) DAC toggling, a novel technique which named switching glitch compensation (SGC) is presented. By detecting the relationship between any two adjacent input codes, then, launching the compensation glitch with an assistant DAC, the transient non-linearity induced by code-dependent switching glitch could be greatly eliminated in high operation speed. Secondly, to overcome the gradient and random mismatch between current source arrays, the concentric parallelogram routing and the random-rotated-based selection techniques which proposed by our laboratory would be applied, respectively. Finally, the output impedance compensation (OIC) technique is adapted to remedy the output-voltage-dependent output current caused by finite output impedance and keeping great output signal linearity under low operation voltage.
    This current-steering DAC use fabricated in TSMC 28nm 1P10M technology with 0.1mm2 active area. The measurement result shows that the DAC achieve the spurious free dynamic range (SFDR) > 64dB in full Nyquist bandwidth at 10GS/s with power consumption less than 180mW. And, comparing to state-of-the-art, this DAC has the best figure-of merit (FoM).

    Table of Contents 摘要 I Abstract III Acknowledgements V Table of Contents VI List of Tables VIII List of Figures IX Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Review of the DAC non-linearity source 3 1.3 Organization 4 Chapter 2: Fundamental of Nyquist-Rate DACs 6 2.1 Ideal DAC introduction 7 2.2 Static performance 8 2.3 Dynamic performance 10 2.4 Architecture of digital-to-analog converter 16 2.4.1 Resistor-string based DAC 17 2.4.2 Binary-Weighted Resistor DAC 18 2.4.3 Charge-redistribution DAC 21 2.4.4 Current-steering DAC 23 Chapter 3: Prior Techniques for Linearity Improvement 25 3.1 Suppression of mismatch effect 25 3.1.1 Current source mismatch effect. 27 3.1.2 Dynamic element matching (DEM) 31 3.1.3 Common-centroid layout. 35 3.2 Finite output impedance effect 39 3.2.1 Code-dependent Output Impedance. 39 3.2.2 Output impedance compensation [30] 42 3.3 Code-dependent transient non-linearity 44 3.3.1 Transient non-linearity reduction analysis and Technique comparison. 44 Chapter 4: Switching Glitch Compensation (SGC) for Transient non-linearity suppression In Nyquist Rate DAC 52 4.1 Operation Principle of SGC 52 4.2 Comparison with Other Constant Switching Techniques 57 4.3 Circuit Implementation 60 4.3.1 On-chip testing circuit 62 4.3.2 DEM logic 63 4.3.3 Retiming D flip-flop and switch driver array 64 4.3.4 Current cells array 65 4.3.5 Clock receiver 67 4.3.6 Output impedance compensation circuit 68 4.3.7 Transition switching glitch compensation circuit 68 4.4 Layout and Post-Simulation Result summary 69 4.5 Measurement Result 74 4.5.1 Measurement Setup 74 4.5.2 PCB Layout Consideration 75 4.5.3 Experience Result 77 4.5.4 Performance Summary and Comparison 81 Chapter 6: Inter-Symbol-Interference Desensitization Technique (ISID) in Over-Nyquist Rate DAC 84 5.1 Operation Principle 84 5.1.1 Two Phase Holding (TPH) Concept 84 5.1.2 Inter-Symbol-Interference Desensitization (ISID) Concept 87 5.1.3 Mismatch Effect of ISID DAC 88 5.2 Circuit Implementation 89 5.2.1 Retiming D flip-flop and switch driver array 90 5.2.2 ISID logic circuit 93 5.3 Layout and Post-Simulation Result summary 94 Chapter 6: Conclusion and Future Work 101 6.1 Conclusion 101 6.2 Future Work 102 References 103

    [1] V. Ravinuthula et al., “A 14-bit 8.9GS/s RF DAC in 40nm CMOS achieving > 71dBc LTE ACPR at 2.9GHz” in IEEE Symp. VLSI Circuits (VLSIC), June 2016.
    [2] G. Engel, M. Clara, H. Zhu, and P. Wilkins, “A 16-bit 10Gsps current steering RF DAC in 65nm CMOS achieving 65dBc ACLR multi-carrier performance at 4.5GHz Fout” in IEEE Symp. VLSI Circuits (VLSIC), June 2015.
    [3] C. Erdmann et al,. “A 330mW 14b 6.8GS/s dual-mode RF DAC in 16nm FinFet achieving -70.8dBc ACPR in a 20MHz channel at 5.2GHz” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 280–281.
    [4] L. Duncan, B. Dupaix, and J. J. McCue et al., “A 10-bit DC-20-GHz multiple-return-to-zero DAC with >48-dB SFDR” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3262-3275, Dec. 2017.
    [5] S. Su and M. S.-W. Chen, “A 16-bit 12-GS/s single/dual-rate DAC with a successive bandpass delta-sigma modulator achieving <-67dBc IM3 within DC to 6-GHz tunable passbands” IEEE J. Solid-State Circuits, vol. 53, no. 12, pp. 3517-3527, Dec. 2018.
    [6] E. Bechthum, G. Radulov, J. Briaire, G. Geelen, and A. van Roermund, “A 5.3GHz 16b 1.75GS/s wideband RF mixing-DAC achieving IMD <-82dBc up to 1.9GHz” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 170–171.
    [7] W.-T. Lin and T.-H. Kuo, “A compact dynamic-performance-improved current-steering DAC with random rotation-based binary-weighted selection” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 444-453, Feb. 2012.
    [8] W.-T. Lin, H.-Y. Huang, and T.-H. Kuo, “A 12-bit 40nm DAC achieving SFDR > 70dB at 1.6GS/s and IMD < -61dB at 2.8GS/s with DEMDRZ technique” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 708-717, Mar. 2014.
    [9] C. Lin, K. L. J. Wong, T.-Y. Kim et al., “A 16b 6GS/s nyquist DAC with IMD <-90dBc up to 1.9GHz in 16nm CMOS” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 360–361.
    [10] C.-H. Lin, F. M. L. van der Goes, and J. R. Westra et al., “A 12 bit 2.9GS/s DAC with IM3 < -60dBc beyond 1GHz in 65nm CMOS” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285-3293, Dec. 2009.
    [11] A. V. den Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s nyquist current-steering CMOS D/A converter” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315-324, Mar. 2001.
    [12] D. A. Mercer, “Low-power approaches to high-speed current-steering digital-to-analog converter in 0.18-μm CMOS” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1688-1698, Aug. 2007.
    [13] L. Lai, X. Li, Y. Liu, and H. Yang, “Demystifying and mitigating code-dependent switching distortions in current-steering DACs” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 1, pp. 68-81, Jan. 2019.
    [14] A. Sanyal, L. Chen, and N. Sun, “Dyanamic element matching with signal-independent element transition rates for multibit ΔΣ modulators” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 5, pp. 1325-1334, May. 2019.
    [15] T. Shui, R. Schreier, and F. Hudson, “Mismatch shaping for a current-mode multibit delta-sigma DAC” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 331-338, Mar. 1999.
    [16] A. Sanyal and N. Sun, “Dyanamic element matching techniques for static and dynamic errors in continuous-time multi-bit ΔΣ modulator” IEEE J. on emerging and selected topics in circuit and systems, vol. 5, no. 4, pp. 598-611, Dec. 2015.
    [17] E. Olieman, A. Johan, and B. Nauta, “An interleaved full nyquist high-speed DAC technique” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 704-713, Mar. 2015.
    [18] T. Chen and G. G. E. Gielen, “The analysis and improvement of a current-steering DACs dynamic SFDR-I: The cell-dependent delay differences” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 1, pp. 3-15, Jan. 2006.
    [19] T. Chen and G. G. E. Gielen, “The analysis and improvement of a current-steering DACs dynamic SFDR-II: The output-dependent delay differences” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 268-279, Feb. 2007.
    [20] W. Schofield, D. Mercer, and L. St. Onge, “A 16b 400MS/s DAC with <-80dBc IMD to 300MHz and <-160dBm/Hz noise power spectral density” in IEEE ISSCC Dig. Tech. Papers, Feb. 2003.
    [21] K. Doris, J. Briaire, D. Leenaerts, M.Vertregt, and A. van Roermund, “A 12b 500MS/s DAC with >70dB SFDR up to 120MHz in 0.18μm CMOS” in IEEE ISSCC Dig. Tech. Papers, Feb. 2005, pp. 116–117.
    [22] G. A. M. Van der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaeert, and G. G. E. Gielen, “A 14-bit intrinsic accuary Q2 random walk CMOS DAC” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1708-1718, Dec. 1999.
    [23] P. Palmers, and M. Steyaert, “A 11mW 68dB SFDR 100MHz bandwidth ΔΣ-DAC based on a 5-bit 1GS/s core in 130nm” in IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), pp. 214–217, Sept. 2008.
    [24] C.-H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6mm2” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, Dec. 1998.
    [25] J. Remple and I. Galton, “The effects of inter-symbol interference in dynamic element matching DACs” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 1, pp. 14-23, Jan. 2017.
    [26] L. Risbo, R. Hezar, B. Kelleci, H. Kiper, and M. Fares. “Digital approaches to ISI-mitigation in high-resolution oversampled multi-level D/A converters” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2892-2903, Dec. 2011.
    [27] B. Schafferer and R. Adams. “A 3V CMOS 400mW 14b 1.4GS/s DAC for multi-carrier applications” in IEEE ISSCC Dig. Tech. Papers, Feb. 2004.
    [28] G. Engel, S. Kuo, and S. Rose. “A 14b 3/6GHz current-steering RF DAC on 0.18μm CMOS with 66dB ACLR at 2.9GHz” in IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 458–459.
    [29] S. Park, G. Kim, S.-C. Park, and W. Kim. “A digital-to-analog converter based on differential-quad switching” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1335-1338, Oct. 2002.
    [30] H.-Y. Huang and T.-H. Kuo. “A 0.07mm2 210mW single-1.1V-supply >64dB SFDR 10GS/s DAC with concentric parallelogram and output impedance compensation” in IEEE Symp. VLSI Circuits (VLSIC), June 2019, pp. 136–137.

    下載圖示 校內:2024-12-25公開
    校外:2024-12-25公開
    QR CODE