研究生: |
李孟謙 Li, Meng-Chien |
---|---|
論文名稱: |
採用灰狼優化控制器於大型離岸風場整合混合儲能系統經模組化多階轉換器之高壓直流鏈饋入多機電力系統之穩定度改善 Stability Improvement of a Large-scale Offshore Wind Farm Integrating with a Hybrid Energy Storage System Fed to a Multimachine Power System through a Modular Multilevel Converter-based High-Voltage Direct-Current Link Using a Grey Wolf Optimization Controller |
指導教授: |
王醴
Wang, Li |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 175 |
中文關鍵詞: | 離岸風場 、全釩氧化還原液流電池 、超級電容器 、混合式儲能 、多機電力系統 、比例-積分-微分控制器 、灰狼優化算法 、穩定度 |
外文關鍵詞: | Offshore wind farm, vanadium redox flow battery, supercapacitor, hybrid energy storage, multi-machine power system, proportional-integral-derivative controller, grey wolf optimization algorithm, stability |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究大型離岸風場連接配置在海上平台的一套由全釩氧化還原液流電池以及超級電容器所組成的混合式儲能系統後,透過海上平台上的模組化多階轉換器與高壓直流傳輸系統將電力高效且穩定地傳輸至陸上之四機雙區域多機電力系統之穩定度改善分析。為進一步提升系統的穩定性與響應性能,本論文使用模態控制理論對模組化多階轉換器設計一組輔助阻尼控制器,即比例-積分-微分控制器,並引入灰狼優化算法來更新此控制器的三個重要參數來進一步優化控制器的性能。在穩態線性分析及小訊號穩定度方面,分別對所研究系統的不同案例進行比較;於動態與暫態研究方面,加入實際海上風速變動與不同干擾下進行模擬,以比較系統在不同案例情況下之穩定度。
This thesis investigates the integration of a hybrid energy storage system, composed of a vanadium redox flow battery and a supercapacitor, connected to a large-scale offshore wind farm via an offshore platform (OP). Using a modular multilevel converter (MMC) installed on the OP and a high-voltage direct-current link, electric power is transmitted efficiently and stably to a multimachine power system on land for stability enhancement analysis. To further improve system stability and dynamic performance, a supplementary damping controller (SDC) based on modal control theory is designed for the MMC. This SDC adopts a proportional-integral-derivative (PID) structure, and the grey wolf optimizer (GWO) algorithm is introduced to tune the SDC’s three key parameters to optimize its performance. In terms of steady-state linear analysis and small-signal stability, different case studies are compared. For dynamic and transient studies, actual offshore wind speed variations and various disturbances are introduced in simulations to evaluate and compare the system’s stability under different scenarios.
[1] X. Peng, H. Hu, A. Zhang, J. Li, S. Hu, and H. Huang, “Economic dispatch of offshore oil and gas platform group based on electricity-gas shared energy storage,” in Proc. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration(EI2), Chengdu, China, Nov. 11-13, 2022, pp. 6451-6467.
[2] G. Shi, S. Peng, X. Cai, Z. Chen, and W. He, “Grid integration of offshore wind farms and offshore oil/gas platforms,” in Proc. Proceedings of the 7th International Power Electronics and Motion Control Conference, Harbin, China, Jun. 02-05, 2012, pp. 1372-1378.
[3] Y. Chen and G. Chen, “Offshore wind power & utilization and calculation of offshore platform,” in Proc. 2011 International Conference on Electrical and Control Engineering, Yichang, China, Sep. 16-18, 2011, pp. 244-252.
[4] P. S. Kundur and O. P. Malik, Power System Stability and Control, 2nd ed. New York, NY, USA: McGraw-Hill, 2022.
[5] K. R. Das, D. Das, and J. Das, “Optimal tuning of PID controller using GWO algorithm for speed control in DC motor,” in Proc. 2015 International Conference on Soft Computing Techniques and Implementations(ICSCTI), Faridabad, India, Oct. 08-10, 2015, pp.23-27.
[6] M. M. Mahmoud, M. K. Ratib, J. Raglend, J. Swaminathan, M. M. Aly, and A. M. Abdel-Rahim, “Application of grey wolf optimization for PMSG-based WECS under different operating conditions: performance assessment,” in Proc. 2021 Innovations in Power and Advanced Computing Technologies(i-PACT), Kuala Lumpur, Malaysia, Nov. 27-29, 2021, pp.76-82.
[7] M. D. H. Almawlawe, E. J. Alshebaney, H. H. Naji, and M. H. Wali, “Improving gains of a PID Controller for non-linear DC-DC converter using gray wolf optimization method,” in Proc. 2023 3rd International Scientific Conference of Engineering Sciences(ISCES), Diyala, Iraq, May 03-04, 2023, pp.86-93.
[8] 柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
[9] J. N. Forestieri and M. Farasat, “Integrative sizing/real-time energy management of a hybrid supercapacitor/undersea energy storage system for grid integration of wave energy conversion systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 3798-3810, Jul. 2019.
[10] Z. Zhang, Y. Zhang, Q. Huang, and W. Lee, “Market-oriented optimal dispatching strategy for a wind farm with a multiple stage hybrid energy storage system,” CSEE Journal of Power and Energy Systems, vol. 4, no. 4, pp. 417-424, Dec. 2018.
[11] Y. Ghiassi-Farrokhfal, C. Rosenberg, S. Keshav, and M. Adjaho, “Joint optimal design and operation of hybrid energy storage systems,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 639-650, Mar. 2016.
[12] G. Sun, B. Yuan, G. Lu, Z. Wang, P. Xia, and C. Wu, “Multi-time-scale scheduling of hybrid energy storage systems,” in Proc. 2024 IEEE International Conference on Energy Internet(ICEI), Zhuhai, China, Nov. 01-03, 2024, pp. 246-252.
[13] J. Lyu, X. Cai and, M. Molinas, “Optimal design of controller parameters for improving the stability of MMC-HVDC for wind farm integration,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 40-53, Oct. 2018.
[14] H. Lin, T. Xue, J. Lyu, and X. Cai, “Impact of different AC voltage control modes of wind-farm-side MMC on stability of MMC-HVDC with offshore wind farms,” Journal of Modern Power Systems and Clean Energy, vol. 11, no. 5, pp. 1687-1699, Jan. 2023.
[15] J. Lyu, X. Cai, and M. Molinas, “Frequency domain stability analysis of MMC-based HVDC for wind farm integration,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 1, pp. 141-151, Mar. 2016.
[16] K. Ji, G. Tang, H. Pang, and J. Yang, “Impedance modeling and analysis of MMC-HVDC for offshore wind farm integration,” IEEE Trans. Power Delivery, vol. 35, no. 3, pp. 1488-1501, Jun. 2020.
[17] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, “A grey wolf optimizer for optimum parameters of multiple PI controllers of a grid-connected PMSG driven by variable speed wind turbine,” IEEE Access, vol. 6, no. 3, pp. 44120-44128, Aug. 2018.
[18] T. Zhang, X. Wang, and Z. Wang, “A novel improved grey wolf optimization algorithm for numerical optimization and PID controller design,” in Proc. 2018 IEEE 7th Data Driven Control and Learning Systems Conference(DDCLS), Enshi, China, May 25-27, 2018, pp.3451-3462.
[19] S. Padhy and S. Panda, “Application of a simplified grey wolf optimization technique for adaptive fuzzy PID controller design for frequency regulation of a distributed power generation system,” Protection and Control of Modern Power Systems, vol. 6, no. 1, pp. 1-16, Jan. 2021.
[20] R. Kuri, D. Paliwal, and D. K. Sambariya, “Grey wolf optimization algorithm based PID controller design for AVR power system,” in Proc. 2019 2nd International Conference on Power Energy, Environment and Intelligent Control(PEEIC), Greater Noida, India, Oct. 18-22, 2019, pp. 1-8.
[21] T. Xue, J. Lyu, H. Wang, and X. Cai, “A complete impedance model of a PMSG-based wind energy conversion system and its effect on the stability analysis of MMC-HVDC connected offshore wind farms,” IEEE Trans. Energy Conversion, vol. 36, no. 4, pp. 3449-3461, Apr. 2021.
[22] Y. Wang, C. Zhao, C. Guo, and A. U. Rehman, “Dynamics and small signal stability analysis of PMSG-based wind farm with an MMC-HVDC system,” CSEE Journal of Power and Energy Systems, vol. 6, no. 1, pp. 226-235, Mar. 2020.
[23] J. Yan, L. Lin, Y. Li, X. Shi, J. Hu, and C. Lin, “Overcurrent suppression method for multiple wind farms connected to MMC-HVDC,” IEEE Trans. Circuits and Systems, vol. 69, no. 11, pp. 4473-4477, Nov. 2022.
[24] G. Zeng, J. Zhong, J. She, F. Cao, and C. Liao, “Research on dynamic energy regulation algorithm for hybrid energy storage in large-scale island microgrids,” in Proc. 2025 4th International Conference on Smart Grid and Green Energy(ICSGGE), Sydney, Australia, Feb. 28- Mar. 02, 2025, pp. 307-314.
[25] D. Zhu, Z. Zhang, B. Zhou, J. Zhou, and K. Chen, “Planning of power allocation strategies for a hybrid energy storage system in a joint energy-reserve-frequency regulation market,” in Proc. 2024 IEEE PES 16th Asia-Pacific Power and Energy Engineering Conference(APPEEC), Nanjing, China, Oct. 25-27, 2024, pp. 654-669.
[26] Y. Nagasaki, S. Fukaume, T. Owada, and M. Tsuda, “Applicability of SMES to electric and hydrogen hybrid energy storage system for large-capacity renewable energy generation,” in Proc. 2023 IEEE International Conference on Energy Technologies for Future Grids(ETFG), Wollongong, Australia, Dec. 03-06, 2023, pp. 5315-5327.
[27] Y. Wang, Y. Chen, S. Liu, and Q. Yang, “Real-time control of hybrid energy storage system for power volatility smoothing in offshore wind farms,” in Proc. 2024 4th International Conference on Control Theory and Applications(ICoCTA), Hangzhou, China, Oct. 18-20, 2024, pp. 745-754.
[28] B. Sun, Z. Chen, C. Gao, A. Haddad, J. Liang, and X. Liu, “A power decoupling control for wind power converter based on series-connected MMC and open-winding PMSG,” IEEE Trans. Industrial Electronics, vol. 69, no. 8, pp. 8091-8101, Aug. 2022.
[29] S. Debnath and M. Saeedifard, “A new hybrid modular multilevel converter for grid connection of large wind turbines,” IEEE Trans. Sustainable Energy, vol. 4, no. 4, pp. 1051-1064, Oct. 2013.
[30] K. R. Padiyar, HVDC Power Transmission Systems, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2021.
[31] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年7月。
[32] 曾喜彥,採用全釩氧化還原液流電池於市電併聯型混合再生能源發電系統之性能改善,國立成功大學電機工程學系碩士論文,2019年7月。
[33] 林裕涵,同步發電機採用以模組化多階轉換器為基礎之高壓直流鏈連接至電網之穩定度分析,國立成功大學電機工程學系碩士論文,2023年7月。
[34] 李庭佑,以模組化多階轉換器為基礎之多饋入式高壓直流輸電系統連接再生能源之穩定度改善分析,國立成功大學電機工程學系碩士論文,2024年7月。
[35] 廖子豪,風能與採用電網形成之太陽能發電透過模組化多階轉換器連接至多機電力系統之穩定度分析,國立成功大學電機工程學系碩士論文,2024年7月。