| 研究生: |
廖兼賢 Liao, Chien-Hsien |
|---|---|
| 論文名稱: |
以離散位置資訊作速度與加速度估測之研究 Study on Velocity and Acceleration Estimation from Discrete-Time Position Data |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 速度估測 、加速度估測 |
| 外文關鍵詞: | velocity estimation, acceleration estimation |
| 相關次數: | 點閱:89 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般而言,回授控制是伺服控制系統中基本且必要的手段。然而閉迴路系統對於感測元件的靈敏度很高,若感測元件本身易受雜訊影響,導致回授訊號受到污染,反而會破壞了整體系統性能。因此一純淨的回授訊號源不但能提升系統的控制性能,更能降低控制器設計的複雜度。另一方面,伺服控制系統近年來已成為產業機械中重要的基本組件之一。然而對於諸多產業機械而言,欲達到自動化且高精密度的生產目標,其伺服控制系統需要速度、甚至加速度的回授訊號。有鑑於此,本論文之主要目的在於分析各種速度與加速度估測法則並比較其優劣,期於不同的速度及加速度應用範圍中,提供一適當的估測方式。此外,本論文所使用之系統參數鑑別策略,有別於一般使用頻譜分析儀找出系統模型的方式,能有效且快速地決定系統參數。最後本論文以AC伺服馬達搭配一負載進行實驗,以驗證各估測法則之性能。
Generally speaking, feedback control is a basic and necessary trick in servo control systems. However, a closed-loop system is highly sensitive to the performances of the measurement devices. If these devices are not robust to the noise, the performance of the closed-loop system will be deteriorated due to the polluted feedback signal. Therefore, a high-accuracy feedback signal not only can improve the system performance, but also can reduce the complexity of controller design. On the other hand, a servo control system has become one of the fundamental components of the industrial machineries recently. For a large amount of industrial machineries, to achieve the goal of high-accuracy and automatic mass-production, their servo control systems usually require the velocity information or even the acceleration information as the feedback signal. Hence, the aim of this thesis is to analyze and evaluate several kinds of velocity and acceleration estimation methods, such that a simple and reliable criterion of choosing appropriate estimation methods in different velocity and acceleration ranges can be provided. In addition, a model identification strategy that is different from the common approach is used in this study, in which it can identify the system model quickly and efficiently. At the last, an AC servo motor with a load is used as the test device to evaluate the performance of various estimation methods.
[1] C. T. Johnson and R. D. Lorenz, “Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms,” IEEE Transactions on Industry Applications, vol. 28, no. 6, November/December 1992.
[2] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of Algorithms for Velocity Estimation from Discrete Position Versus Time Data,” IEEE Transactions on Industrial Electronics, vol. 39, no. 1, February 1992.
[3] R. D. Lorenz and K. W. Van Patten, “High-Resolution Velocity Estimation for All-Digital, ac Servo Drives,” IEEE Transactions on Industry Applications, vol. 27, no. 4, July/August 1991.
[4] Y. Hori, “Robust and Adaptive Control of a Servomotor Using Low Precision Shaft Encoder,” IEEE-IECON’93, November 1993, Hawaii.
[5] Y. Hori, “Ultra-low Speed Control of Servomotor Using Low Resolution Rotary Encoder,” IEEE IECON’95, pp. 615~620, November 1995, Orlando.
[6] S. M. Yang and S. J. Ke, “Performance Evaluation of a Velocity Observer for Accurate Velocity Estimation of Servo Motor Drives,” IEEE Transactions on Industry Applications, vol. 36, no. 1, January/February. 2000.
[7] F. C. Lin and S. M. Yang, “Adaptive Fuzzy Logic-Based Velocity Observer for Servo Motor Drives,” Mechatronics, pp. 229-241, 2003.
[8] R. D. Lorenz, T. A. Lipo and D.W. Novotny, “Motion Control with Induction Motors,” Proceedings of the IEEE, vol. 82, no. 8, August 1994.
[9] J. Yen and R. Langari, Fuzzy Logic Intelligence, Control and Information, Prentice-Hall, 1999.
[10] 中國生產力中心,Fuzzy理論與應用實務,全華科技圖書股份有限公司,1996年。
[11] 李祖聖,Lecture Notes on Fuzzy Logic Control,2002年。
[12] H. W. Kim, J. W. Choi and S. K. Sul, “Accurate Position Control for AC Servomotor Using Novel Speed Estimator,” Proc. IEEE Int. Conf. Industrial Electronics, Control and Instrumentation, pp. 627~632, 1995.
[13] H. W. Kim and S. K. Sul, “A New Motor Speed Estimator Using Kalman Filter in Low-Speed Range,” IEEE Transactions on Industrial Electronics, vol. 43, no.4, August 1996.
[14] 劉家良,適應性卡爾曼濾波器於低轉速之應用,碩士論文,國立成功大學電機工程學系,2003年。
[15] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Technical Report, University of North Carolina at Chapel Hill, 2001.
[16] G. F. Franklin, J. D. Powell and M. Workman, Digital Control of Dynamic Systems, 3rd edition Addison-Wesley, 1997.
[17] K. Ogata, Discrete-Time Control Systems, Prentice-Hall, 1987.
[18] A. V. Oppenheim, R. W. Schafer and J.R. Buck, Discrete-Time Signal Processing, 2nd edition Prentice-Hall, 1999.
[19] 楊家輝,Lecture Notes on Digital Signal Processing,2003年。
[20] 唐佩忠,CNC伺服參數調整專家系統(第二期),1993年。
[21] Fanuc AC Servo Unit Maintenance Manual, Fanuc Ltd., 1997.
[22] P. B. Schmidt and R. D. Lorenz, “Design Principles and Implementation of Acceleration Feedback to Improve Performance of dc Drives,” IEEE Transactions on Industry Applications, vol. 28, no. 3, May/June 1992.
[23] S. H. Lee and J. B. Song, “Acceleration Estimator for Low-Velocity and Low-Acceleration Region,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, March 2001.
[24] P. R. Bélanger, “Estimation of Angular Velocity and Acceleration from Shaft Encoder Measurements,” Proceedings of International Conference on Robotics and Automation, Nice, France, May 1992.
[25] F. Janabi-Sharifi, V. Hayward and C.S.J. Chen, “Discrete-Time Adaptive Windowing for Velocity Estimation,” IEEE Transactions on Control Systems Technology, vol. 8, no. 6, November 2000.
[26] 胡家勝,阻抗控制於力覺回饋控制應用之設計與實現,碩士論文,國立成功大學機械工程學系,2003年。
[27] B. C. Kuo, Automatic Control Systems, 7th edition Prentice-Hall, 1995.
[28] 邱奕範,命令及摩擦力前饋控制於工具機之研究,碩士論文,國立成功大學機械工程學系,2002年。
[29] PMC32韌體開發技術手冊ver2.0,工業技術研究院機械工業研究所,2002年。
[30] 惠汝生,自動量測系統—LabView,全華科技圖書股份有限公司,2002年。