簡易檢索 / 詳目顯示

研究生: 廖國洋
Liao, Kuo-Yang
論文名稱: 適用於非方陣非最小相位系統之新型比例積分最佳線性二次狀態估測追蹤器
New PI Optimal Linear Quadratic State-Estimate Trackers for Non-Square Non-Minimum Phase Systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 133
中文關鍵詞: 最佳線性二次追蹤器最佳線性二次估測器頻域塑型比例–積分–微分濾波器非極小相位系統輸入-輸出直接傳輸項
外文關鍵詞: Optimal linear quadratic tracker, Optimal linear quadratic estimator, Frequency shaping, PID filter, Non-minimum phase system, Input-output direct feed-through term
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種新型比例-積分最佳線性二次狀態估測追蹤器。基於在時域性能指標函數中頻域塑型法的發展,頻域的設計概念得以融入時域的最佳方法論;首先,針對具有未知外部干擾的非隨機連續/離散系統,我們分別推導廣義最佳線性二次類比/數位追蹤器,接著,相對應新的估測狀態器設計程序也在本論文呈現,基於比例-積分-微分濾波器塑型法的方法,發展出一種新的比例-積分最佳線性二次狀態估測器,其適用於非方陣、非最小相位多輸入多輸出的連續/離散系統;最後,此論文提出足以達到類似最小相位系統之追蹤性能的新型最佳濾波器塑型比例–積分狀態回授二次狀態估測追蹤器,用以解決非方陣、非最小相位多變數系統,其系統含有不可量測的狀態和劇烈變化的時變指令輸入。在本論文中,以多種範例驗證所提方法的有效性。

    New proportional-plus-integral (PI) optimal linear quadratic state-estimate trackers are proposed in this dissertation. With the development of the frequency-domain shaping on the time-domain performance index function, the frequency-domain design concept can be merged into the optimization methodology in the time domain. First, generalized optimal linear quadratic analog and digital trackers are derived for the deterministic continuous-time and discrete-time general systems with disturbances models, respectively. Secondly, this dissertation presents corresponding new procedures for the continuous-time and discrete-time state estimator designs. Based on the proportional-integral-derivative (PID) filter shaping approach, new PI optimal linear quadratic state estimator (LQSE) for the continuous-time/discrete-time non-square and non-minimum phase (NMP) multi-input-multi-output (MIMO) systems is developed. Finally, the proposed LQSE-based tracker is able to optimally achieve satisfactory minimum phase-like tracking performances for a non-square NMP multivariable system with unmeasurable states and time-varying command inputs with drastic variations. Illustrative examples are demonstrated in this dissertation to shows the effectiveness of the proposed design methodology.

    中文摘要 i Abstract ii Contents iv List of Figures vi Symbols and Abbreviations ix Chapter 1 Introduction 1 1.1 Literature survey and motivation 1 1.2 Contributions 9 1.3 Organization of the dissertation 9 Chapter 2 Generalized Optimal Linear Quadratic Trackers Design Methodology for Proper Systems with Known/Unknown Disturbances 11 2.1 Stability study for the desired optimal input-output direct-feedthrough linear quadratic analog tracker systems 11 2.2 Stability study for the desired optimal input-output direct-feedthrough linear quadratic digital tracker systems 19 Chapter 3 Proportional-Plus-Integral State-Estimate Tracker for Non-Square Non-Minimum Phase Continuous Time Systems 27 3.1 New optimal PI linear quadratic analog estimator for non-minimum phase systems: PID filter-based frequency shaping approach 27 3.2 Proportional-plus-integral state-estimate tracker for the non-square non-minimum phase systems 41 3.3 Illustrative examples 43 Chapter 4 Proportional-Plus-Integral State-Estimate Tracker for Non-Square Non-Minimum Phase Discrete Time Systems 77 4.1 New optimal PI-based linear quadratic digital estimator for non-minimum phase systems: PID filter-based frequency shaping approach 77 4.2 Proportional-plus-integral state-estimate tracker for the non-square non-minimum phase systems 91 4.3 Illustrative example 94 Chapter 5 Conclusions 113 5.1 Conclusions 113 5.2 Future works 114 References 116 Appendix A Optimal PI state-feedback linear quadratic tracker for non-square non-minimum phase continuous-time systems: PID filter-based frequency shaping approach 120 Appendix B Optimal PI state-feedback linear quadratic tracker for non-square non-minimum phase discrete-time systems: PID filter-based frequency shaping approach 127

    [1] Anderson, B.D.O., and Mingori, D.L., “Use of frequency dependence in linear quadratic problems to frequency shape robustness,” Journal of Guidance and Control, vol. 8, no. 3, pp. 397–401, 1985.
    [2] Anderson, B.D.O., and Moore, J.B., Optimal Control: Linear Quadratic Methods. Prentice-Hall, New Jersey, 1989.
    [3] Astrom, K.J., Hagander, P., and Sternby, J., “Zeros of sampled systems,” Automatica, vol. 20, no. 1, pp. 31–38, 1984
    [4] Benvenuti, L., Di Benedetto, M.D., and Grizzle, J.W., “Approximate output tracking for nonlinear non-minimum phase systems with an application to flight control,” International Journal of Robust and Nonlinear Control, vol. 4, no. 3, pp. 397–414, 1994.
    [5] Chang, J.L., “Applying discrete-time proportional integral observers for state and disturbance estimations,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 814-818, 2006.
    [6] Chen, Y.M., and Wu, Y.C., “Modified recursive least-squares algorithm for parameter identification,” International Journal of Systems Science, vol. 23, no. 2, pp. 187–205, 1992.
    [7] Chu, C., and Doyle, J., On inner-outer spectral factorization. In Proc. Conference on Decision and Control. Las Vegas, NV, pp. 1764-1765, 1984.
    [8] Clarke, DW., “Self-tuning control of non-minimum-phase systems,” Automatica, vol. 20, no. 5, pp. 501–517, 1984.
    [9] Doraiswami, R., Jiang, J., and Balasubramanian, R., “On-line frequency-and-time-domain identification of a linear multivariable system,” International Journal of Systems Science, vol. 17, no. 9, pp. 1349–1371, 1986.
    [10] Doyle J.C., Francis, B.A., and Tannenbaum, A.R., Feedback Control Theory. NY: Macmillan, 1990.
    [11] Ebrahimzadeh, F., Tsai, J.S.H., Chung, M.C., Liao, Y.T., Guo, S.M., Shieh, L.S., and Wang, L., “A new generalized optimal linear quadratic tracker with universal applications -Part 2: Discrete-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 397–416, 2017.
    [12] Ebrahimzadeh, F., Tsai, J.S.H., Liao, Y.T., Chung, M.C., Guo, S.M., Shieh, L.S., & Wang, L., “A new generalized optimal linear quadratic tracker with universal applications -Part 1: Continuous-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 376–396, 2017.
    [13] Emami-Naeini, A., and Dooren, P. V., “Computation of zeros of linear multivariable systems,” Automatica, vol. 18, no. 4, pp. 425–430, 1982.
    [14] Ishiharaa, T., and Guo, H.J., “Integral controller design based on disturbance cancellation: Partial LTR approach for non-minimum phase plants,” Automatica, vol. 41, pp. 2083–2089, 2005.
    [15] Ishiharaa, T., and Guo, H.J., “LTR design of disturbance cancellation integral controllers for time-delay plants,” International Journal of Control, vol. 81, no. 7, pp. 1027–1034, 2008.
    [16] Ishiharaa, T., and Guo, H.J., Partial LTR design of optimal output disturbance cancellation controllers for non-minimum phase plants. The 18th IFAC World Congress, Milano (Italy), Aug. 28-Sep. 2, pp. 7903–7908, 2011.
    [17] Ishiharaa, T., and Guo, H.J., “Design of optimal output disturbance cancellation controllers via loop transfer recovery”, Systems Science & Control Engineering: An Open Access Journal, vol. 1, no. 1, pp. 57–65, 2013.
    [18] Ishiharaa, T., and Guo, H.J., “Design of optimal disturbance cancellation controllers via modified loop transfer recovery,” Systems Science & Control Engineering: An Open Access Journal, vol. 3, pp. 332–339, 2015.
    [19] Johnson, M.A., and Moradi, M.H. PID Control: New Identification and Design Methods. London: Springer, 2005.
    [20] Kalman, R.E., “Where is a linear control system optimal?” Trans. ASME, Journal of Basic Engineering, vol. 86, no. 1, pp. 51–60, 1964.
    [21] Katebi, M., and Moradi, M., “Predictive PID controllers,” IEE Proceedings-D, vol. 148, no. 6, pp. 478–487, 2001.
    [22] Kilicaslan, S., and Banks, S.P., “Existence of solutions of Riccati differential equations,” Journal of Dynamic Systems, Measurement, and Control, vol. 134, no. 3, pp. 031001–11, 2012.
    [23] Latawiec, K., Banka, S., and Tokarzewski, J., “Control zeros and non-minimum phase LTI MIMO systems,” Annual Reviews in Control, vol. 24, no. 1, pp. 105–112, 2000.
    [24] Lee, Y.Y., Tsai, J.S.H., Shieh, L.S., and Chen, G., “Equivalent linear observer-based tracker for stochastic chaotic system with delays and disturbances,” IMA Journal of Mathematical Control and Information, vol. 22, no. 3, pp. 266–284, 2005.
    [25] Lewis, F.L., Applied Optimal Control and Estimation. NJ: Prentice-Hall, 1992.
    [26] Lewis, F.L., & Syrmos, V.L., Optimal Control. NJ: John Wiley & Sons, 1995.
    [27] Lin, F.J., Chen, S.Y., and Huang, M.S., “Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system,” IET Control Theory and Applications, vol. 5, no. 11, pp. 1287-1303, 2011.
    [28] MacFariance, A.G.J., and Karcanias, N., “Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex variable theory,” International Journal of Control, vol. 24, no. 1, pp. 33–74, 1976.
    [29] Miller, R.M., Shah, S.L., Wood, R.K., and Kwok, E.K., “Predictive PID,” ISA Transactions, vol. 38, no. 1, pp. 11–23, 1999.
    [30] Moradi, M.H., Katebi, M.R., and Johnson, M.A. Predictive PID control: A new algorithm. Industrial Electronics Society. In IECON '01: The 27th Annual Conference of the IEEE Denver, Co, pp. 764-769, 2001.
    [31] Morari, M., and Zafiriou, E., Robust process control. Englewood Cliffs, NJ: Prentice Hall, 1989.
    [32] Moore, J.B., and Tay, T.T., “Loop recovery via / sensitivity recovery,” International Journal of Control, vol. 49, no. 4, pp. 1249–1271, 1989,
    [33] Ray, G., and Rama Mohan Rao, P., “On-line identification and control of multivariable discrete-time systems based on a transformed model,” International Journal of Systems Science, vol. 21, no. 1, pp. 175–191, 1990.
    [34] Sage, A.P., and White, C.C., Optimum System Control. NJ: Prentice-Hall, 1977.
    [35] Sagara, S., Yang, Z.J., and Wada, K., “Identification of continuous-time systems using digital low-pass filters,” International Journal of Systems Science, vol. 22, no. 7, pp. 1157–1176, 1991.

    [36] Sato, T., “Design of a GPC-based PID controller for controlling a weigh feeder,” Control Engineering Practice, vol. 18, no. 2, pp. 105–113, 2010.
    [37] Schrader, C.B., and Sain, M.K., “Research on system zeros: A survey,” International Journal of Control, vol. 50, no. 4, pp. 1407–1433, 1989.
    [38] She, J.H., Fang, M., Ohyama, Y., Hashimoto, H., and Wu, M., “Improving disturbance-rejection performance based on an equivalent-input-disturbance approach,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 380–389, 2008.
    [39] Su, H., and Tang, G.Y., “Observer-based approximate optimal tracking control for time-delay systems with external disturbances,” International Journal of Systems Science, vol. 47, no. 12, pp. 2837–2846, 2016.
    [40] Tan, K.K., Lee, T.H., and Leu, F.M., “Predictive PI versus Smith control for dead-time compensation,” ISA Transactions, vol. 40, no. 1, pp. 17–29, 2001.
    [41] Tan, K.K., Huang, S.N., and Lee, T.H., “Development of a GPC-based PID controller for unstable systems with dead-time,” ISA Transactions, vol. 39, no. 1, pp. 57–70, 2000.
    [42] Tsai, J.S.H., Ebrahimzadeh, F., Chung, M.C., Guo, S.M., Shieh, L.S., Tsai, T.J., and Wang, L. New optimal linear quadratic digital tracker for the discrete-time proper system with an unknown disturbance. 18th International Conference on Control Systems and Computer Science Engineering (ICCSCSE’16), Berlin (Germany), vol. 18, no. 5, 2307–2313, 2016.
    [43] Tsai, J.S.H, Ebrahimzadeh, F., Hsu, W.T., Tann, J.W., Guo, S.M., Shieh, L.S., Canelon, J.I., and Wang, L. Modelling and tracker design for unknown nonlinear stochastic delay systems with positive input constraints, Applied Mathematical Modeling. (Accepted for publication), 2016.
    [44] Tsai, J.S.H., Ebrahimzadeh, F., Lin, Y.Y., Guo, S.M., Shieh, L.S., Juang, Y.T., “An efficient robust servo design for non-minimum phase discrete-time systems with unknown matched/mismatched input disturbances,” Automation, Control and Intelligent Systems, vol. 5, no. 2, pp. 14–28, 2017.
    [45] Tsai, J.S.H, Du, Y.Y., Zhuang, W.Z., Guo, S.M., Chen, C.W., and Shieh, L.S., “Optimal anti-windup digital redesign of MIMO control systems under input constraints,” IET Control Theory & Applications, vol. 5, no. 3, pp. 447–464, 2011.
    [46] Tsai, J.S.H., Hsu, W.T., Lin, L.G., Guo, S.M., and Tan, J.W., “A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term,” ISA Transactions, vol. 53, no. 1, pp. 56–75, 2014.
    [47] Tsai, J.S.H., Liao, Y.-T., Ebrahimzadeh, F., Lai, S.Y., Su, T.J., Guo, S.M., Shieh, L.S., and Tsai, T. J., “A new PI optimal linear quadratic state-estimate tracker for continuous-time non-square non-minimum phase systems,” International Journal of Systems Science, vol. 48, no. 7, pp. 1438–1459, 2017.
    [48] Tsai, J.S.H., Liao, Y.-T., Lin, Z.W., Ebrahimzadeh, F., Guo, S.M., Shieh, L.S., and Canelon, J.I., “A new PI-based optimal linear quadratic state-estimate tracker for discrete-time non-square non-minimum phase systems,” International Journal of Systems Science, vol. 49, no. 9, pp. 1856-1877, 2018.
    [49] Tsai, J.S.H., Su, T.J., Cheng, J.C., Lin, Y.Y., Giap, V.N., Guo, S.M., and Shieh, L.S. “Robust observer-based optimal linear quadratic tracker for five-degree-of-freedom sampled-data active magnetic bearing system,” International Journal of Systems Science, vol. 49, no. 6, pp. 1273-1299, 2018.
    [50] Uren, K., and Schoor, G.V. Predictive PID control of non-minimum phase systems. Advances in PID Control. Valery D and Yurkevich (Ed.), ISBN: 978-953-307-267-8. Croatia: InTech. Available at: http://www. intechopen.com/books/advances-in-pid-control/predictive-pid-control-of-non-minimum-phase-systems, 2011.

    [51] Wang, L.P. Model Predictive Control System Design and Implementation using MATLAB. London: Springer, 2009.
    [52] Wu, C.Y., Tsai, J.S.H., Guo, S.M., Shieh, L.S., Canelon, J.I., Ebrahimzadeh, F., and Wang, L., “A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems,” Journal of the Franklin Institute, vol. 352, no. 3, pp. 1119–1151, 2015.
    [53] Wu, J., Liao, F., and Tomizuka, M. “Optimal preview control for a linear continuous time stochastic control system in finite-time horizon,” International Journal of Systems Science, vol 48, no. 1, pp. 129-137, 2016.
    [54] Wu, W.T., Tseng, C.G., and Chu, Y.T., “System identification and on-line robust control of a multivariable system,” International Journal of Systems Science, vol. 25, no. 3, pp. 423–439, 1994.
    [55] Zhang, W., Wang, Y., Liu, Y., and Zhang, W. “Multivariable disturbance observer-based analytical decoupling control design for multivariable systems,” International Journal of Systems Science, vol. 47, no. 1, pp. 179–193, 2015.
    [56] Zhang, Z., and Freudenberg, J.S., “Loop transfer recovery with non-minimum phase zeros,” IEEE Transactions on Automatic Control, vol. 35, no. 5, pp. 547–553, 1990.
    [57] Zheng, W.X., “Least squares parameter estimation of linear systems with noisy input-output data,” International Journal of Systems Science, vol. 37, no. 7, pp. 447–453, 2006.

    無法下載圖示 校內:2025-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE