簡易檢索 / 詳目顯示

研究生: 古佩弘
Ku, Pei-Hung
論文名稱: 應用改良型花朵授粉演算法於考量用戶接受程度之配電變壓器選址規劃研究
Application of Improved Flower Pollination Algorithm to Distribution Transformer Placement Considering Customer Acceptance
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 88
中文關鍵詞: 改良型花朵授粉演算法配電變壓器選址用戶接受程度
外文關鍵詞: improved flower pollination algorithm, distribution transformer placement, customer acceptance
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出改良型花朵授粉演算法應用於低壓系統之配電變壓器選址規劃,研究主旨乃在於將用戶接受程度、配電變壓器設置成本、中低壓線路成本以及能量損失成本,統整考量建立配電變壓器之選址規劃數學模型,同時輔以花朵授粉演算法擬定低壓系統之配電變壓器選址規劃策略。其中花朵授粉演算法乃依據自然界中,花朵藉由授粉行為以達到傳遞花粉並繁衍後代之目的,予以推導建模而成,應有助於求解最佳化問題。此外,本文為增強演算法尋優效能,加入人工篩選及人工授粉兩大機制,並將其應用於求解配電變壓器選址規劃問題。而為驗證本文提出方法於配電變壓器選址規劃之可行性,本文利用不同規模之低壓系統進行模擬測試,並與其他方法比較,經由測試結果可知,本文所提方法於配電變壓器選址規劃中,確已展現優質計算特性,應具電力應用潛力。

    This thesis proposes an application of improved flower pollination algorithm for distribution transformer placement in a low-voltage network. The study integrates the customer acceptance with transformer installation cost, line cost and energy loss such that the formulated mathematical models can be solved by the proposed algorithm. This proposed method mimics the pollination behavior of flowers, by which the optimization process can be well simulated. Moreover, considering improving the optimization performance, the study adds the artificial selection and artificial pollination to guide the solution search so as to further enhance the optimization capability. To confirm the effectiveness of this approach, the method has been tested through different low-voltage systems with comparison to other published techniques. Test results validate this proposed approach for distribution transformer placement with high-performance computation along with a potential of applying to other electric power applications.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 1 第一章 緒論 1 1-1 研究背景及動機 1 1-2 研究方法及步驟 2 1-3 論文各章重點簡述 4 2 第二章 配電變壓器選址規劃問題描述 6 2-1 前言 6 2-2 配電變壓器 7 2-3 配電變壓器選址規劃 10 2-3-1 系統運轉限制式 11 2-3-2 系統規劃成本模型建立 12 2-3-3 模糊歸屬函數建立 15 2-3-4 目標函數建立 18 2-4 本章結論 18 3 第三章 改良型花朵授粉演算法介紹 19 3-1 前言 19 3-2 花朵授粉演算法行為探討及數學建模 19 3-3 花朵授粉演算法之計算流程簡介 25 3-3-1 應用花朵授粉演算法於求解最佳化問題之演算流程 25 3-3-2 應用花朵授粉演算法於求解配電變壓器選址問題之演算流程 27 3-4 改良型花朵授粉演算法之數學建模 31 3-4-1 人工機制參數 31 3-4-2 人工篩選機制 31 3-4-3 人工授粉機制 33 3-4-4 改良型花朵授粉演算法之計算流程 34 3-5 本章結論 36 4 第四章 模擬結果 38 4-1 前言 38 4-2 演算法參數設定探討 38 4-2-1 小型低壓系統之描述 39 4-2-2 花朵族群數目(N)之探討 41 4-2-3 授粉機率(p)之探討 42 4-2-4 人工機制參數(A)之探討 44 4-3 測試結果分析 45 4-3-1 包含20個負載點之低壓系統規劃測試結果分析 47 4-3-2 包含36個負載點之低壓系統測試結果分析 54 4-3-3 包含114個負載點之低壓系統測試結果分析 67 4-4 本章結論 73 5 第五章 結論及未來研究方向 75 5-1 結論 75 5-2 未來研究方向 76 參考文獻 78 附錄 83

    [1] X. Su, M. A. S. Masoum, and P. J. Wolfs, “Optimal PV Inverter Reactive Power Control and Real Power Curtailment to Improve Performance of Unbalanced Four-Wire LV Distribution Networks,” IEEE Transactions on Sustainable Energy, Vol. 5, No. 3, pp. 967-977, July 2014.
    [2] K. Zou, A. P. Agalgaonkar, K. M. Muttaqi, and S. Perera, “Distribution System Planning with Incorporating DG Reactive Capability and System Uncertainties,” IEEE Transactions on Sustainable Energy, Vol. 3, No. 1, pp. 112-123, January 2012.
    [3] M. Erol-Kantarci, B. Kantarci, and H. T. Mouftah, “Reliable overlay topology design for the smart microgrid network,” IEEE Network, Vol. 25, No. 5, pp. 38-43, September-October 2011.
    [4] J. E. Mendoza, M. E. López, S. C. Fingerhuth, H. E. Peña and C. A. Salinas “Low Voltage Distribution Planning Considering Micro Distributed Generation,” Electric Power Systems Research, Vol. 103, pp. 233-240, October 2013.
    [5] E. Díaz-Dorado, E. Miguez, and J. Cidrás , “Design of Large Rural Low-Voltage Networks Using Dynamic Programming Optimization,” IEEE Transactions on Power Systems, Vol. 16, No. 4, pp. 898-903, November 2001.
    [6] M. T. Tsay and S. Y. Chan “Improvement in System Unbalance and Loss Reduction of Distribution Feeders Using Transformer Phase Rearrangement and Load Diversity,” International Journal of Electrical Power and Energy Systems, Vol. 25, No. 5, pp. 395-401, June 2003
    [7] J. C. Moreira, E. Míguez, C. Vilachá, and A. F. Otero, “Large-Scale Network Layout Optimization for Radial Distribution Networks by Parallel Computing,” IEEE Transactions on Power Delivery, Vol. 26, No. 3, pp. 1946-1951, July 2011.
    [8] E. Díaz-Dorado and J. C. Pidre, “Optimal Planning of Unbalanced Networks Using Dynamic Programming Optimization,” IEEE Transactions on Power Delivery, Vol. 19, No. 4, pp. 2077-2085, November 2004.
    [9] D. M. Jovanovic, “Planning of Optimal Location and Sizes of Distribution Transformers Using Integer Programming,” International Journal of Electrical Power and Energy Systems, Vol. 25, No. 9, pp. 717-723, November 2003.
    [10] J. M. Yusta and A. J. Urdaneta, “Integral Planning of Primary–Secondary Distribution Systems Using Mixed Integer Linear Programming,” IEEE Transactions on Power Systems, Vol. 20, No. 2, pp. 1134-1143, May 2005.
    [11] R. A. Jabr, R. Singh, and B. C. Pal, “Minimum Loss Network Reconfiguration Using Mixed-Integer Convex Programming,” IEEE Transactions on Power Systems, Vol. 27, No. 2, pp. 1106-1115, May 2012.
    [12] I. J. Ramirez-Rosado and J. L. Bernal-Agustin, “Genetic Algorithms Applied to the Design of Large Power Distribution Systems,” IEEE Transactions on Power Systems, Vol. 13, No. 2, pp. 696-703, May 1998.
    [13] M. Ramezani, H. Falaghi, M. Parsa Moghaddam, and M.-R. Haghifam, “Genetic Based Algorithm for Optimal Placement gineering Society General Meetof Distribution Transformers,” Power Engineering Society, General Meeting, Quebec, Canada, pp. 1-5, 2006.
    [14] S. Najafi, S. H. Hosseinian, M. Abedi, A. Vahidnia, and S. Abachezadeh, “A Framework for Optimal Planning in Large Distribution Networks,” IEEE Transactions on Power Systems, Vol. 24, No. 2, pp. 1019-1028, May 2009.
    [15] V. Farahani, B. Vahidi, and H. A. Abyaneh, “Reconfiguration and Capacitor Placement Simultaneously for Energy Loss Reduction Based on an Improved Reconfiguration Method,” IEEE Transactions on Power Systems, Vol. 27, No. 2, pp. 587-595, May 2012.
    [16] I. J. Ramírez-Rosado and J. A. Domínguez-Navarro, “New Multiobjective Tabu Search Algorithm for Fuzzy Optimal Planning of Power Distribution Systems,” IEEE Transactions on Power Systems, Vol. 21, No. 1, pp. 224-233, February 2006.
    [17] A. M. Cossi, R. Romero, and J. R. S. Mantovani, “Planning and Projects of Secondary Electric Power Distribution Systems,” IEEE Transactions on Power Systems, Vol. 24, No. 3, pp. 1599-1608, August 2009.
    [18] A. Navarro and H. Rudnick, “Large-Scale Distribution Planning—Part
    II: Macro-Optimization with Voronoi’s Diagram and Tabu Search,” IEEE Transactions on Power Systems, Vol. 24, No. 2, pp. 752-758, May 2009.
    [19] D. L. Duan, X. D. Ling, X. Y. Wu, and B. Zhong, “Reconfiguration of Distribution Network for Loss Reduction and Reliability Improvement Based on an Enhanced Genetic Algorithm,” International Journal of Electrical Power and Energy System, Vol. 64, pp. 88-95, January 2015.
    [20] V. M. Vélez M, R. A. Hincapíe I, and R. A. Gallego R, “Low Voltage Distribution System Planning Using Diversified Demand Curves,” International Journal of Electrical Power and Energy System, Vol. 61, pp. 691-700, October 2014.
    [21] E. Díaz-Dorado, J. Cidrás Pidre, and E. M. García, “Planning of Large Rural Low-Voltage Networks Using Evolution Strategies,” IEEE Transactions on Power Systems, Vol. 18, No. 4, pp. 1594-1600, November 2003.
    [22] A. M. Cossi, R. Romero, and J. R. S. Mantovani, “Planning of Secondary Distribution Circuits Through Evolutionary Algorithms,” IEEE Transactions on Power Delivery, Vol. 20, No. 1, pp. 205-213, January 2005.
    [23] R. F. Chang, Y. C. Chang, and C. N. Lu “Feeder Reconfiguration for Accommodating Distributed Generations Interconnection,” IEEE International Conference on Intelligent System Application to Power Systems, Hersonissos, Greece, pp. 1-6, September 2011.
    [24] I. Ziari, G. Ledwich, and A. Ghosh, “Optimal Integrated Planning of MV–LV Distribution Systems Using DPSO,” International Journal of Electrical Power Systems Research, Vol. 81, pp. 1905-1914, October 2011.
    [25] I. Ziari, G. Ledwich, A. Ghosh, and G. Platt, “Integrated Distribution Systems Planning to Improve Reliability Under Load Growth,” IEEE Transactions on Power Delivery, Vol. 27, No. 2, pp. 757-765, April 2012.
    [26] X. S. Yang, “Flower Pollination Algorithm for Global Optimization,” Lecture Notes in Computer Science, Vol. 7445, pp. 240-249, 2012.
    [27] X. S. Yang, M. Karamanoglu, and X. He, “Multi-objective Flower Algorithm for Optimization,” Procedia Computer Science, Vol. 18, pp. 861-868, 2013
    [28] J. E. Mendoza, M. E. López, H. E. Peña, and D. A. Labra, “Low Voltage Distribution Optimization: Site, Quantity and Size of Distribution Transformers,” International Journal of Electric Power Systems Research, Vol. 91, pp. 52-60, October 2012.
    [29] 「架空配電線路器材」,台灣電力公司業務處,2004年6月。
    [30] 「地下配電線路設計」,台灣電力公司業務處,2013年3月。
    [31] PG&E, Electric Distribution, 051122 document, “Clearances and Location Requirements for Enclosures Pads, and Underground Equipment,” June 2012.
    [32] 「配電手冊(一)規劃設計篇」,台灣電力公司業務處,第7-1頁至第7-19頁,2013年2月。
    [33] 「公路用地使用規則」,交通部,2013年2月18日。
    [34] S. Sundhararajan and A. Pahwa, “Optimal Selection of Capacitors for Radial Distribution Systems Using a Genetic Algorithm,” IEEE Transactions on Power Systems, Vol. 9, No. 3, pp. 1499-1507, August 1994.
    [35] J. B. Park, Y. W. Jeong, J. R. Shin, and K. Y. Lee, “An Improved Particle Swarm Optimization for Nonconvex Economic Dispatch Problems,” IEEE Transactions on Power Systems, Vol. 25, No. 1, pp. 156-166, February 2010.
    [36] IEEE Std C57.91™-2011, “IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators,”, pp. 98-102, March 2012.

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE