簡易檢索 / 詳目顯示

研究生: 黃永豐
Huang, Yung-Feng
論文名稱: 飛航安全之工程分析-控制系統觀點
Engineering Analysis of Flight Safety-Control System Approach
指導教授: 景鴻鑫
Jing, Hung-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 218
中文關鍵詞: 飛航安全裕度飛航安全人機系統
外文關鍵詞: Flight Safety, Aircraft-Pilot System, Flight Safety Margin
相關次數: 點閱:152下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用“飛航安全裕度”理論,結合自動控制理論,來探討實際民航飛行中,航機由正常飛行,到發生事故所呈現的控制失穩現象。從系統觀點來看,飛航組員可視為整個飛航控制系統其中的一環,航機的飛行狀態,是飛航組員與飛機系統,相互合作的結果。如果飛機系統的反應,與飛航組員的控制意圖不調和,或甚至相互衝突,即產生人機耦合(aircraft-pilot coupling)問題,容易造成意外甚至空難。從系統穩定性的觀點來看,航空事故是一種人機系統失控,與飛航狀態發散的現象。飛航安全裕度理論,可以將複雜的飛航狀態,初步整合成一個量化指標,來表達飛航安全性的變化,以利探討人機系統之表現。本研究分析包含正常航班與事故航班,針對飛航安全裕度的變動進行研究,呈現出各個航班之人機系統,在操作安全上的穩定性,並討論事故航班之控制失穩現象。在系統訊號處理上,分別使用了快速傅利葉轉換( Fast Fourier Transform ),與希爾伯特-黃轉換( Hilbert Huang Transform )兩種方法,執行訊號之時域頻域轉換。現階段的結果顯示,自動控制理論中之增益值,及增益跨越頻率,有可能做為未來飛航安全評估中,判斷人機系統是否已經開始進入不穩定狀態的依據。未來若能透過更多實例的驗證,證實本研究的正確性,將能提供飛航安全之基本工程分析能力。

    The objective of this research is to combine the theory of ‘Flight Safety Margin’ with control systems. This research is aimed at treating the phenomenon of aircraft losing control. From a systematic viewpoint, crew members constitute a part of the whole flight control system. The well performance of aircraft is due to the crew members and the flight control system cooperates mutually. In other words, when flight control system’s reaction is not accord with crew members’ mind, aircraft-pilot coupling problem which creates the accident easily becomes a serious trouble. Air accident is a kind of appearance of aircraft-pilot system losing control and divergent flight situation. From safety margin theory, complicated flight situation can be integrated into one quantitative index that conveys change of flight safety. With analyzing safety margin in control system theory approach, we can discuss the stability and safety of aircraft-pilot system in each flight. In this research, Fast Fourier Transform and Hilbert Huang Transform are two methods which be used to handle signal processing problem. It is found that the Gain Values and Crossover Frequencies can be treated as indexes which estimate the stability and safety of aircraft-pilot system.

    目錄 中文摘要Ⅰ 英文摘要Ⅱ 誌謝Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 附錄Ⅹ 符號說明XI 第一章 緒論1 1-1 研究背景1 1-2 文獻回顧7 1-3 研究動機與目的10 第二章 飛航安全裕度理論12 2-1 情境空間12 2-2 專家系統14 2-3 飛航安全裕度之案例分析17 2-3-1 正常航班17 2-3-2 大霧航班18 2-3-3 名古屋事件18 2-3-4 大園事件19 第三章 飛航人機控制系統20 3-1 傳遞函數20 3-2 跨越模型22 3-3 增益值與增益跨越頻率24 第四章 研究方法26 4-1 分析流程26 4-2 快速傅利葉轉換(Fast Fourier Transform) 9 4-3 希爾伯特-黃轉換(Hilbert Huang Transform) 30 4-3-1 瞬時頻率30 4-3-2 本質模態函數(Intrinsic Mode Function) 32 4-3-3 經驗模態分解法(Empirical Mode Decomposition) 32 4-3-4 希爾伯特頻譜(Hilbert Spectrum) 34 第五章 結果與討論35 5-1 快速傅利葉轉換(FFT)之案例應用35 5-2 快速傅利葉轉換(FFT)之結果37 5-3 希爾伯特-黃轉換( HHT)之案例應用40 5-4 希爾伯特-黃轉換( HHT)之結果 43 第六章 結論與建議45 參考文獻47 圖50 附錄79 圖目錄 圖1-1 骨牌模型示意圖50 圖1-2 事故鍊模型示意圖50 圖1-3 起司模型示意圖51 圖1-4 SHELL模型示意圖51 圖1-5 序列式觀點之缺陷52 圖1-6 風險矩陣52 圖1-7 現今航空業風險的判斷53 圖1-8 複雜系統之風險53 圖1-9 飛航人機系統示意圖54 圖1-10 人機迴授控制系統方塊圖54 圖2-1 飛航安全裕度理論之基本概念圖55 圖2-2 所需綜合飛行能力之問卷55 圖2-3 類神經網路工具56 圖2-4 某一瞬間飛航情境參數56 圖2-5 37筆正常航班之安全裕度的變動57 圖2-6 正常平均與事件航班之安全裕度的變動57 圖3-1 線性跨越模型示意圖58 圖3-2 當考慮低頻之修正跨越模型的圖形58 圖4-1 輸入訊號之平滑動作59 圖4-2 名古屋事件中,人機系統輸入輸出之安全裕度值59 圖4-3 希爾伯特-黃轉換法(HHT)流程圖60 圖4-4 經驗模態分解法(EMD)流程圖60 圖4-5 經驗模態分解法(EMD)61 圖4-6 希爾伯特頻譜(Hilbert Spectrum) 63 圖4-7 希爾伯特頻譜之頻率-時間圖63 圖5-1 名古屋事件落地前190秒人機系統輸出訊號 與高斯加權(FFT) 64 圖5-2 名古屋事件落地前190秒人機系統輸出訊號 之頻譜(FFT)64 圖5-3 名古屋事件落地前190秒人機系統誤差訊號 與高斯加權(FFT) 65 圖5-4 名古屋事件落地前190秒人機系統誤差訊號 之頻譜(FFT) 65 圖5-5 名古屋事件落地前190秒人機系統波德圖(FFT) 66 圖5-6 名古屋事件落地前190秒人機系統波德圖 (忽略高頻部分) (FFT) 66 圖5-7 名古屋事件人機系統增益值對時間圖(FFT) 67 圖5-8 名古屋事件人機系統增益跨越頻率對時間圖與修正圖(FFT) 67 圖5-9 人機系統之操控安全性的增益值與時間關係圖(FFT) 68 圖5-10 人機系統之操控安全性的跨越頻率與時間關係圖(FFT) 68 圖5-11 名古屋輸出訊號之安全裕度69 圖5-12 名古屋輸出訊號之本質模態函數(IMF) 69 圖5-13 名古屋輸出訊號IMF之希爾伯特頻譜70 圖5-14 名古屋輸出訊號IMF之頻率對時間關係70 圖5-15 名古屋誤差訊號之安全裕度71 圖5-16 名古屋誤差訊號之本質模態函數(IMF) 71 圖5-17 名古屋誤差訊號IMF之希爾伯特頻譜72 圖5-18 名古屋誤差訊號IMF之頻率對時間關係72 圖5-19 名古屋落地前190秒輸出訊號IMF之頻率對能量關係73 圖5-20 名古屋落地前190秒誤差訊號IMF之頻率對能量關係73 圖5-21 名古屋落地前190秒輸出訊號IMF之頻率對能量關係 (高斯函數) 74 圖5-22 名古屋落地前190秒誤差訊號IMF之頻率對能量關係 (高斯函數) 74 圖5-23 名古屋落地前190秒輸出與誤差訊號之頻率對能量關係75 圖5-24 名古屋落地前190秒之人機系統波德圖(HHT) 75 5-25 名古屋事件增益值對時間76 圖5-26 名古屋事件增益跨越頻率對時間圖76 5-27 名古屋事件人機系統增益值對時間圖(HHT) 77 圖5-28 名古屋事件人機系統增益跨越頻率對時間圖 與修正圖(HHT) 77 圖5-29 人機系統之操控安全性的增益值與時間關係圖(HHT) 78 圖5-30 人機系統之操控安全性的跨越頻率與時間關係圖(HHT) 78 附錄 附錄一 所有航班安全裕度變化79 附錄二 所有航班人機系統增益值變化(FFT) 附錄三 所有航班人機系統增益跨越頻率變化(FFT) 附錄四 所有航班人機系統增益跨越頻率平滑後變化(FFT) 附錄五 所有航班人機系統增益值變化(HHT) 附錄六 所有航班人機系統增益跨越頻率變化(HHT) 179 附錄七 所有航班人機系統增益跨越頻率平滑後變化(HHT) 199

    1. Aircraft Accident Investigation Commission, Ministry of Transport, Japan, ─Aircraft Accident Investigation Report ─ China Airlines, Airbus Industries A300B4-622R, Nagoya Airport 1994.4.26∥, 1996.
    2. Aviation Safety and Pilot Control – Understanding and Preventing Unfavorable Pilot – Vehicle Interactions, National Research Control, Washington D.C, National Academy Press, 1997.
    3. Boeing Commercial Airplane Group, Flight Safety and Accident Investigation Workshop, IAA, NCKU, 1994.
    4. Edwards, E., ─Man and Machine:System for Safety∥, Proceedings of the BALPA Technical Symposium, London, 1972.
    5. Federal Aviation Administration, ─Introduction to Safety Management Systems for Air Operators∥, Advisory Circular AC No:120-92, 2006.
    6. Gabor, D., ─Theory of communication∥, Proceedings of IEEE, vol. 93, pp. 429-457, 1946.
    7. Hawkins, F.H, Human Factors in Flight, Aldershot, Ashgate, 1987.
    8. Heinrich, H.W., Industrial Accident Prevention, 3rd ed., N.Y, MeGraw-Hill Book Co., 1950.
    9. Helmreich, R.L., ─Cockpit Management Attitude∥, Human Factors, Vol.26, pp.63-72, 1984.
    10. Helmreich, R.L., Klinect, J.R., Wilhelm, J.A, ─Models of threat, error, and CRM in flight operation∥, Proceedings on the Tenth International
    Symposium on Aviation Psychology, Columbus, OH, 1999.
    11. Hess, R., ─Feedback Control Models—Manual Control and Tracking ─, Chapter 38, Handbook of Human Factors and Ergonomics, Ed, By G.Salvendy, N.T., John Wiley and Sons, New York, 1996.
    12. Hirsch, D. L., McCormick., R. L., Experimental Investigation of Pilot Dynamics in a Pilot-Induced Oscillation Situation, Washington, D. C. AIAA, 1965.
    13. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H, Zheng, Q., Yen, N. C., Tung, C. C., Liu, H. H., ─The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis∥, 1998.
    14. Koivo, A.T., Repperger, D.W., Koivo, A.J., ─Detection of Aircraft Pilot Coupling Caused Oscillation∥, Computational Intelligence in Robotics and Automation, 1999. CIRA '99. Proceedings. 1999 IEEE International Symposium on , 1999 ,pp.220 –225.
    15. McRuer, D., Krendel, E., ─Mathematical Models of Human Pilot Behavior∥, (AGARDograph NO. 188). NATO Advisory Group for Aerospace Research and Development, 1974.
    16. McRuer, D., and E. S. Krendel, Dynamic Response of Human Operators, WADC-TR-56-524, Oct. 1957.
    17. McRuer, D., Graham, D., Krendel, E.,and Reisener, E. J., Human Pilot Dynamics in Compensatory Systems, AFFDL-TR-65-15, Air Force Flight Dynamics Laboratory, 1965.
    18. Nise, N.S., ─Control Systems Engineering∥, Redwood City, CA, Benjamin/Cummings, 1995.
    19. Perrow, C., Normal Accidents: Living with High Risk Technologies, NJ, Princeton University Press, 1984.
    20. Reason, J., Human Errors, New York, Cambridge University Press, 1990.
    21. 交通部民用航空局, ─航空器失事調查報告書─中華航空公司空中巴士A300B4-622R,桃園大園1998.2.16∥, 2000.
    22. 李志民,─飛行員動作技能測試之輔助工具研發∥ ,國立成功大學航空太空工程研究所碩士論文,中華民國九十四年。
    23. 盛嘉昇,─飛航安全之幾何觀點-飛航安全裕度∥,國立成功大學航空太空工程研究所碩士論文,中華民國九十五年。
    24. 景鴻鑫,─本土化之飛安理念∥,飛航安全檢討與提昇研討會,國立成功大學,中華民國八十七年。
    25. 盧郁文,“人機耦合問題探討-追蹤行為之異向性”,國立成功大學航空太空工程研究所碩士論文,中華民國九十年。
    26. 景鴻鑫,黃永豐,“航空事故中之人機系統控制失穩現象研究”,第十五屆三軍官校基礎學術研討會,空軍軍官學校,中華民國九十七年。

    下載圖示 校內:2018-07-23公開
    校外:2018-07-23公開
    QR CODE